Sample Questions 8

1. Determine whether S is linearly independent or not.
(a) $S=\left\{\left[\begin{array}{c}1 \\ -3 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 4\end{array}\right],\left[\begin{array}{c}4 \\ -4 \\ 14\end{array}\right]\right\}$
(b) $S=\left\{\left[\begin{array}{l}1 \\ 7 \\ 7\end{array}\right],\left[\begin{array}{l}2 \\ 7 \\ 7\end{array}\right],\left[\begin{array}{l}3 \\ 7 \\ 7\end{array}\right]\right\}$
(c) $S=\left\{\left[\begin{array}{c}0 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 4\end{array}\right]\right\}$
2. Consider the vector space of all functions on \mathbb{R}. Determine whether S is linearly independent or not.
(a) $S=\{\cos (x), \sin (x)\}$
(b) $S=\{1, \sin (x), \sin (2 x)\}$
(c) $S=\left\{1, \cos ^{2}(x), \sin ^{2}(x)\right\}$
(d) $S=\left\{\cos (2 x), \cos ^{2}(x), \sin ^{2}(x)\right\}$
3. Show that any $n+1$ vectors in \mathbb{R}^{n} form a linearly dependent set.
4. Suppose S is a linearly independent set. Show that $S \cup\{\mathbf{v}\}$ is linearly independent if and only if $\mathbf{v} \notin \operatorname{span}(S)$.
5. Show that any superset of a linearly dependent set is linearly dependent. Also show that any subset of a linearly independent set is linearly independent.
6. Recall that two vectors \mathbf{v} and \mathbf{u} are orthogonal if $\mathbf{v} \cdot \mathbf{u}=0$. Suppose $S=$ $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is a set of nonzero vectors such that $\mathbf{v}_{i} \cdot \mathbf{v}_{j}=0$ for any i and j. Show that S is linearly independent.
7. Let $\mathbf{A}=\left[a_{i, j}\right]$ be an $n \times n$ matrix such that $a_{i, i} \neq 0$ for all $i=1, \ldots, n$ and $a_{i, j}=0$ for all $i>j$. That is, A is an upper triangular matrix with all diagonal entries nonzero. Show that the columns of A form a linearly independent set. Similarly, show that the rows of A form a linearly independent set.
