Sample Questions 7

1. Let $\mathcal{M}_{2\times 2}$ be the vector space of all 2×2 matrices. Determine whether S is a subspace in $\mathcal{M}_{2\times 2}$ or not. If yes, write S as the span of some finite set of vectors.

(a)
$$S = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} : a, b \in \mathbb{R} \right\}$$

(b) $S = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} : a + b = 5 \right\}$
(c) $S = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} : a + b = 0 \in \mathbb{R} \right\}$

2. Determine whether $\mathbf{v} \in \text{span}(S)$.

(a)
$$\mathbf{v} = \begin{bmatrix} 2\\0\\1 \end{bmatrix}$$
, $\mathbf{S} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$
(b) $\mathbf{v} = \mathbf{x} - \mathbf{x}^3$, $\mathbf{S} = \{\mathbf{x}^2, 2\mathbf{x} + \mathbf{x}^2, \mathbf{x} + \mathbf{x}^3\}$
(c) $\mathbf{v} = \begin{bmatrix} 0&1\\4&2 \end{bmatrix}$, $\mathbf{S} = \left\{ \begin{bmatrix} 1&0\\1&1 \end{bmatrix}, \begin{bmatrix} 2&0\\2&3 \end{bmatrix} \right\}$

3. Determine whether span(S) = \mathbb{R}^3 .

(a)
$$S = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\3 \end{bmatrix} \right\}$$

(b) $S = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\3\\5 \end{bmatrix} \right\}$
(c) $S = \left\{ \begin{bmatrix} 2\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$

4. Let \mathcal{F} be the set of all functions $f : \mathbb{R} \to \mathbb{R}$. A function $f \in \mathcal{F}$ is *even* if f(-x) = f(x) for all $x \in \mathbb{R}$, and is *odd*

if f(-x) = -f(x) for all $x \in \mathbb{R}$. Show that the set of all even functions is a subspace in \mathcal{F} , and the set of all odd functions is also a subspace in \mathcal{F} .

5. Every homogeneous linear equation can be written as

Γ—	\mathbf{v}_1	—]	[c ₁]		٢٥٦	
—	÷	_	:	=	:	
L—	$\mathbf{v}_{\mathfrak{m}}$]	$\lfloor c_n \rfloor$		0	

Let $S = {\mathbf{v}_1, \dots, \mathbf{v}_m}$. Then the solutions are

$$\{\mathbf{c} \in \mathbb{R}^n : \mathbf{c} \cdot \mathbf{v} = 0 \text{ for all } \mathbf{v} \in S\}.$$

Show that this set is the same as

 ${\mathbf{c} \in \mathbb{R}^n : \mathbf{c} \cdot \mathbf{v} = 0 \text{ for all } \mathbf{v} \in \text{span}(S)}.$

[Actually, if S' is obtained from S by row operations, then span(S) = span(S').]

6. Let
$$\mathbf{S} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\},$$

$$\mathbf{A} = \begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ | & | & | \end{bmatrix}, \text{ and } \mathbf{c} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}.$$

For a given vector $\mathbf{b} \in \mathbb{R}^{m}$, show that $\mathbf{Ac} = \mathbf{b}$ has a solution if and only if $\mathbf{b} \in \text{span}(S)$.

7. Let S, A, and c be the same as that in Question 6. Show that S is linearly independent if and only if Ac = 0 has a unique solution (the trivial solution).