Sample Questions 6

1. Let

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & -3 & 1 \\ 1 & 2 & -4 & 2 \\ 2 & 3 & -6 & 5 \\ 3 & 3 & -9 & 4 \end{bmatrix}.$$

Find the matrix B such that $\begin{bmatrix} I_4 & B \end{bmatrix}$ is the reduced echelon form of $\begin{bmatrix} A & I_4 \end{bmatrix}$. Also, verify that **BA** = **AB** = **I**₄

- 2. Name the zero vector for each of these vector spaces.
 - (a) The space of polynomials of degree ≤ 3 .
 - (b) The space of 2×4 matrices.
 - (c) The space of continuous realvalued functions on the closed interval [0, 1].
 - (d) The space of real-valued functions on the natural numbers.
- 3. In the given vector space, find the additive inverse of the vector.
 - (a) Space: polynomials of degree ≤ 3 ; vector: $-3 2x + x^2$.
 - (b) Space: 2×2 matrices; vector: $\begin{bmatrix} 1 & -1 \\ 0 & 3 \end{bmatrix}$.
 - (c) Space: $\{ae^x + be^{-x} \mid a, b \in \mathbb{R}\}$; vector: $3e^x 2e^{-x}$.

4. Given an $m \times n$ matrix **A** and a vector $\mathbf{b} \in \mathbb{R}^{m}$, show that

$$V = \{ \mathbf{x} \in \mathbb{R}^n \, | \, \mathbf{A}\mathbf{x} = \mathbf{b} \}$$

- is a vector space if and only if $\mathbf{b} = \mathbf{0}$.
- 5. Let $M_{n \times n}$ be the family of all $n \times n$ matrices and **O** the zero matrix. For a fixed $\mathbf{A} \in M_{n \times n}$, show that

$$V = \{ \mathbf{X} \in \mathcal{M}_{n \times n} \, | \, \mathbf{A}\mathbf{X} = \mathbf{O} \}$$

is a vector space.

6. Show that each of these is not a vector space.

(a)
$$\begin{cases} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \mid x + y + z = 1 \}$$

(b)
$$\begin{cases} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1 \}$$

(c)
$$\mathbb{R}^+ = \{ x \in \mathbb{R} \mid x > 0 \}$$

7. Show that the set ℝ⁺ of positive real numbers with the two operations ⊕ and ⊗ is a vector space when we define x⊕y = x ⋅ y and r⊗x = x^r. Here + is the usual addition and x^r means the r-th power of x under the usual multiplication.