Sample Questions 5

1. Let \mathbf{u} and \mathbf{v} be two vectors in \mathbb{R}^{n}. Write down the definition of the inner product $\mathbf{u} \cdot \mathbf{v}$. Go through each definition in Chapter 1 of the textbook. Think about how you are going to write the answer if it is asked in the exam.
2. Write down a 3×3 singular matrix and a 3×3 nonsingular matrix. For each properties that we have learned, think about an example with the property and an example without the property.
3. Let

$$
\mathbf{u}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] \text { and } \mathbf{v}=\left[\begin{array}{c}
\sqrt{3} \\
\sqrt{3} \\
1 \\
1
\end{array}\right] .
$$

Find the angle between \mathbf{u} and \mathbf{v}.
4. Prove that a matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is nonsingular if and only if the determinant $a d-b c$ is nonzero.
5. Let \mathbf{A} be a 3×3 matrix. Prove that \mathbf{A} is nonsingular if and only if $\operatorname{det}(\mathbf{A}) \neq 0$. (This is also true for any $n \times n$ matrix, but we need to learn the meaning of the determinant first.)
6. Let \mathbf{A} be a 3×3 matrix. Your goal is to give $k \leqslant 9$ entries of \mathbf{A} so that \mathbf{A} is nonsingular no matter what the remaining entries are. What is the minimum k to achieve this? (This is the 3×3 version of the game we played in the class.)
7. Let

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 1 & -3 & 1 \\
1 & 2 & -4 & 2 \\
2 & 3 & -6 & 5 \\
3 & 3 & -9 & 4
\end{array}\right]
$$

and let $\mathbf{e}_{\mathfrak{j}} \in \mathbb{R}^{4}$ be the vector whose j-th entry is 1 while other entries are zero. For each $\mathfrak{j}=1,2,3,4$, solve $\mathbf{A v}_{j}=$ \mathbf{e}_{j} for $\mathbf{v}_{\mathfrak{j}}$. Is there a better way than doing the row operations four times?

