## Sample Questions 3

1. Show that

$$
\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}
$$

for any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$.
2. Show that the Cauchy-Schwartz inequality implies the triangle inequality.
3. Let

$$
\mathbf{v}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \text { and } X=\left\{\left[\begin{array}{l}
1 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
5
\end{array}\right]\right\} .
$$

Can $\mathbf{v}$ be written as a linear combination of vectors in $X$ ?
4. Let

$$
\mathbf{v}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right] \text { and } X=\left\{\left[\begin{array}{l}
2 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
0 \\
2
\end{array}\right]\right\} .
$$

Can $\mathbf{v}$ be written as a linear combination of vectors in $X$ ?
5. Find the reduced echelon form of the augmented matrix and find the general solution of the following linear system.

$$
\left[\begin{array}{ccc}
2 & -1 & 0 \\
1 & 3 & -1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-1 \\
5 \\
5
\end{array}\right]
$$

6. Find the reduced echelon form of the augmented matrix and find the general solution of the following linear system.

$$
\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & -1 & -1 \\
3 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right]
$$

7. Find the reduced echelon form of the augmented matrix and find the general solution of the following linear system.

$$
\left[\begin{array}{cccc}
1 & 1 & 2 & 1 \\
2 & -1 & 1 & 1 \\
3 & 0 & 3 & 2
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

