1. Show that

$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

for any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$.

- 2. Show that the Cauchy–Schwartz inequality implies the triangle inequality.
- 3. Let

$$\mathbf{v} = \begin{bmatrix} 2\\ 3 \end{bmatrix} \text{ and } X = \left\{ \begin{bmatrix} 1\\ 4 \end{bmatrix}, \begin{bmatrix} 1\\ 5 \end{bmatrix} \right\}.$$

Can **v** be written as a linear combination of vectors in X?

4. Let

$$\mathbf{v} = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix} \text{ and } \mathbf{X} = \left\{ \begin{bmatrix} 2\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 3\\0\\0\\2 \end{bmatrix} \right\}.$$

Can **v** be written as a linear combination of vectors in X?

5. Find the reduced echelon form of the augmented matrix and find the general solution of the following linear system.

2	-1	0	$\begin{bmatrix} x \end{bmatrix}$		[—1]	
1	3	-1	y	=	5	
0	1	2	$\begin{bmatrix} z \\ z \end{bmatrix}$		5	

6. Find the reduced echelon form of the augmented matrix and find the general solution of the following linear system.

[1	1	_1	x		[3]
2	-1	-1	y	=	1
3	0	-2_	$\lfloor z \rfloor$		4

7. Find the reduced echelon form of the augmented matrix and find the general solution of the following linear system.

$$\begin{bmatrix} 1 & 1 & 2 & 1 \\ 2 & -1 & 1 & 1 \\ 3 & 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$