Sample Questions 2

1. Let \mathbf{A} be a matrix, \mathbf{u}, \mathbf{v} two vectors, and r a real number. Show that $\mathbf{A}(\mathbf{u}+$ $\mathbf{v})=\mathbf{A u}+\mathbf{A v}$ and $\mathbf{A}(\mathbf{r v})=r(\mathbf{A v})$.
2. Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]
$$

Let
$A=\left\{c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}: c_{1}, c_{2}, c_{3} \in \mathbb{R}\right\}$
and

$$
B=\left\{\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]: x+y+z+w=0\right\} .
$$

Show that $A=B$ by proving $\mathbf{v} \in$ $A \Longrightarrow \mathbf{v} \in B$ and $\mathbf{v} \in B \Longrightarrow \mathbf{v} \in A$.)
3. Let $\mathbf{0}=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right]$ be a zero vector in \mathbb{R}^{n}. Consider it as an $n \times 1$ matrix. Show that applying any row operation on $\mathbf{0}$ will lead to $\mathbf{0}$. [Therefore, if $(\mathbf{A} \mid \mathbf{b})$ becomes ($\mathbf{R} \mid \mathbf{r}$) after some row operations, then ($\mathbf{A} \mid \mathbf{0}$) will be ($\mathbf{R} \mid \mathbf{0}$) after the same row operations.]
4. Find the general solution of the following linear system.

$$
\left\{\begin{array}{c}
3 x+6 y=18 \\
x+2 y=6
\end{array}\right.
$$

5. Find the general solution of the following linear system.

$$
\left\{\begin{array}{r}
x+2 y-z=3 \\
w+2 x+y=4 \\
w+x-y+z=1
\end{array}\right.
$$

6. Find the general solution of the following linear system.

$$
\left\{\begin{aligned}
u+w+x+y+z & =1 \\
2 u+2 w+2 x+2 y+2 z & =2
\end{aligned}\right.
$$

7. For each of the following matrices, is it singular or nonsingular? Give your reason.
(a) $\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$
(b) $\left[\begin{array}{cccc}0 & 1 & 2 & 3 \\ 4 & 5 & 6 & 7 \\ 8 & 9 & 10 & 11 \\ 12 & 13 & 14 & 15\end{array}\right]$
$\left[\begin{array}{cccc}0 & 1 & 2 & 3 \\ 4 & 5 & 6 & 7 \\ 8 & 9 & 10 & 11 \\ 12 & 13 & 14 & 15\end{array}\right]$
