Sample Questions 13

1. Find a basis for the vector space V.
(a) $V=\mathbb{R}^{3}$
(b) $\mathrm{V}=\mathcal{P}_{3}$, the space of all polynomials of degree at most 3
(c) $\mathrm{V}=\mathcal{M}_{3 \times 3}$, the space of all 3×3 matrices
(d) $\mathrm{V}=\mathcal{S}_{3}$, the space of all 3×3 symmetric matrices $\left(\mathbf{A}=\mathbf{A}^{\top}\right)$
(e) $\mathrm{V}=\mathcal{K}_{3}$, the space of all 3×3 skewsymmetric matrices $\left(\mathbf{A}=-\mathbf{A}^{\top}\right)$
2. With the given basis \mathcal{B} and the representation, find the vector \mathbf{v}.
(a) $\mathcal{B}=\left\{1, x-1,(x-1)^{2}\right\}$ and

$$
\operatorname{Rep}_{\mathcal{B}}(\mathbf{v})=\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]
$$

(b) $\mathcal{B}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right\}$
and $\operatorname{Rep}_{\mathcal{B}}(\mathbf{v})=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$
(c) $\mathcal{B}=\left\{\left[\begin{array}{c}1 \\ 5 \\ 10\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 5\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ and

$$
\operatorname{Rep}_{\mathcal{B}}(\mathbf{v})=\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]
$$

3. Let \mathcal{B} be as Problem 2(a), (b), and (c), respectively. Find $\operatorname{Rep}_{\mathcal{B}}(\mathbf{v})$.
(a) $\mathbf{v}=x^{2}$
(b) $\mathbf{v}=\left[\begin{array}{ll}5 & 7 \\ 7 & 3\end{array}\right]$
(c) $\mathbf{v}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
4. Suppose f is a homomorphism with

$$
f\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
3 \\
5
\end{array}\right] \text { and } f\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
7 \\
7
\end{array}\right]
$$

Find $f\left(\left[\begin{array}{l}2 \\ 4\end{array}\right]\right)$.
5. Suppose \mathbf{A} is a 2×3 matrix with $\mathbf{A e}_{1}=$
$\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{A e}_{2}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$, and $\mathbf{A e}_{3}=\left[\begin{array}{l}5 \\ 6\end{array}\right]$, where $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is the standard basis of \mathbb{R}^{3}. Find \mathbf{A}.
6. Let $\mathcal{B}=\left\{\left[\begin{array}{c}1 \\ 5 \\ 10\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 5\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ be a basis of \mathbb{R}^{3}. Find $\operatorname{Rep}_{\mathcal{B}}\left(\mathbf{e}_{1}\right), \operatorname{Rep}_{\mathcal{B}}\left(\mathbf{e}_{2}\right)$, and $\operatorname{Rep}_{\mathcal{B}}\left(\mathbf{e}_{3}\right)$, where $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is the standard basis of \mathbb{R}^{3}.
7. Suppose f is a homomorphism with

$$
f\left(\left[\begin{array}{c}
1 \\
5 \\
10
\end{array}\right]\right)=f\left(\left[\begin{array}{l}
0 \\
1 \\
5
\end{array}\right]\right)=f\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
3 \\
4
\end{array}\right] .
$$

Find a matrix \mathbf{A} such that $f(\mathbf{v})=\mathbf{A v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$.

