Sample Questions 13

- 1. Find a basis for the vector space V.
 - (a) $V = \mathbb{R}^3$
 - (b) $V = \mathcal{P}_3$, the space of all polynomials of degree at most 3
 - (c) $V = \mathcal{M}_{3 \times 3}$, the space of all 3×3 matrices
 - (d) $V = S_3$, the space of all 3×3 symmetric matrices ($A = A^{\top}$)
 - (e) $V = \mathcal{K}_3$, the space of all 3×3 skewsymmetric matrices ($\mathbf{A} = -\mathbf{A}^{\top}$)
- 2. With the given basis *B* and the representation, find the vector **v**.

(a)
$$\mathcal{B} = \{1, x - 1, (x - 1)^2\}$$
 and
 $\operatorname{Rep}_{\mathcal{B}}(\mathbf{v}) = \begin{bmatrix} 3\\4\\5 \end{bmatrix}$
(b) $\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0\\0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0\\0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1\\1 & 0 \end{bmatrix} \right\}$
and $\operatorname{Rep}_{\mathcal{B}}(\mathbf{v}) = \begin{bmatrix} 3\\4\\5 \end{bmatrix}$
(c) $\mathcal{B} = \left\{ \begin{bmatrix} 1\\5\\10\\\end{bmatrix}, \begin{bmatrix} 0\\1\\5 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ and
 $\operatorname{Rep}_{\mathcal{B}}(\mathbf{v}) = \begin{bmatrix} 3\\4\\5 \end{bmatrix}$

3. Let B be as Problem 2(a), (b), and (c), respectively. Find Rep_B(**v**).

(a)
$$v = x^2$$

(b)
$$\mathbf{v} = \begin{bmatrix} 5 & 7 \\ 7 & 3 \end{bmatrix}$$

(c) $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

4. Suppose f is a homomorphism with

$$f\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{bmatrix} 3\\5 \end{bmatrix} \text{ and } f\begin{pmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} 7\\7 \end{bmatrix}.$$

Find $f\begin{pmatrix} 2\\4 \end{bmatrix}$.

- 5. Suppose **A** is a 2×3 matrix with $\mathbf{Ae}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{Ae}_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, and $\mathbf{Ae}_3 = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$, where $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is the standard basis of \mathbb{R}^3 . Find **A**.
- 6. Let $\mathcal{B} = \left\{ \begin{bmatrix} 1\\5\\10 \end{bmatrix}, \begin{bmatrix} 0\\1\\5 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ be a basis of \mathbb{R}^3 . Find $\operatorname{Rep}_{\mathcal{B}}(\mathbf{e}_1)$, $\operatorname{Rep}_{\mathcal{B}}(\mathbf{e}_2)$, and $\operatorname{Rep}_{\mathcal{B}}(\mathbf{e}_3)$, where $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is the standard basis of \mathbb{R}^3 .
- 7. Suppose f is a homomorphism with

$$f\begin{pmatrix} 1\\5\\10 \end{pmatrix} = f\begin{pmatrix} 0\\1\\5 \end{pmatrix} = f\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{bmatrix} 3\\4 \end{bmatrix}.$$

Find a matrix **A** such that $f(\mathbf{v}) = \mathbf{A}\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$.