Sample Questions 11

1. Let $\mathbf{v} = (1, 1, 1)^{\top}$. Define $V_1 = \text{span}\{\mathbf{v}\}$ (c) $f : \mathbb{R} \to \mathbb{R}$ by $x \mapsto x^3$ and

$$V_2 = \{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{x} \cdot \mathbf{v} = \mathbf{0} \}.$$

For each $x_{\text{\tiny r}}$ find $x_1 \in V_1$ and $x_2 \in V_2$ such that $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$.

2. Let \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , and \mathbf{v}_4 be the columns of $\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$

Let $V_1 = \text{span}(\{\mathbf{v}_1, \mathbf{v}_3\})$ and $V_2 =$ $span(\{v_2, v_4\})$. Determine whether $\{V_1, V_2\}$ is linearly independent or not.

- 3. Let V_1 and V_2 be the same as the previous question. Find a basis for $V_1 + V_2$.
- 4. Determine whether f is an isomorphism.

(a)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 by $\begin{bmatrix} a \\ b \\ c \end{bmatrix} \mapsto \begin{bmatrix} a \\ a \\ a \end{bmatrix}$
(b) $f: \mathcal{M}_{2 \times 2} \to \mathbb{R}^4$ by
 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} a+b+c+d \\ a+b+c \\ a+b \\ a \end{bmatrix}$

- 5. Let V be the plane in \mathbb{R}^3 defined by the equation x + y + z = 0. It is known that V can also be written as

$$\left\{a\begin{bmatrix}1\\-1\\0\end{bmatrix}+b\begin{bmatrix}1\\0\\-1\end{bmatrix}:a,b\in\mathbb{R}\right\}.$$

Find an isomorphism from V to \mathbb{R}^2 . [Hint: The Rep function.]

- 6. Find a such that $\mathfrak{M}_{m\times n}\equiv\mathbb{R}^{\alpha}$ and find b such that $S_n = \mathbb{R}^b$.
- 7. Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be a basis of \mathbb{R}^n . If a vector **y** has the representation

$$\operatorname{Rep}_{\mathcal{B}}(\mathbf{y}) = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}.$$

How do you recover **y** from $\operatorname{Rep}_{\mathcal{B}}(\mathbf{y})$? Indeed, find a matrix **A** such that

$$\mathbf{y} = \mathbf{A} \operatorname{Rep}_{\mathcal{B}}(\mathbf{y}).$$

Conversely, how do you find $\operatorname{Rep}_{\mathcal{B}}(\mathbf{y})$ from y? Find a matrix **B** such that

$$\operatorname{Rep}_{\mathcal{B}}(\mathbf{y}) = \mathsf{B}\mathbf{y}.$$