Sample Questions 11

1. Let $\mathbf{v}=(1,1,1)^{\top}$. Define $\mathrm{V}_{1}=\operatorname{span}\{\mathbf{v}\}$ and

$$
\mathrm{V}_{2}=\left\{\mathbf{x} \in \mathbb{R}^{3}: \mathbf{x} \cdot \mathbf{v}=0\right\} .
$$

For each \mathbf{x}, find $\mathbf{x}_{1} \in \mathrm{~V}_{1}$ and $\mathbf{x}_{2} \in \mathrm{~V}_{2}$ such that $\mathbf{x}=\mathbf{x}_{1}+\mathbf{x}_{2}$.
2. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, and \mathbf{v}_{4} be the columns of

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] .
$$

(c) $f: \mathbb{R} \rightarrow \mathbb{R}$ by $x \mapsto x^{3}$
5. Let V be the plane in \mathbb{R}^{3} defined by the equation $x+y+z=0$. It is known that V can also be written as

$$
\left\{a\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+b\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]: a, b \in \mathbb{R}\right\} .
$$

Find an isomorphism from V to \mathbb{R}^{2}. [Hint: The Rep function.]
6. Find a such that $\mathcal{M}_{\mathfrak{m} \times n} \equiv \mathbb{R}^{a}$ and find b such that $\mathcal{S}_{n}=\mathbb{R}^{b}$.
7. Let $\mathcal{B}=\left\{\nu_{1}, \ldots, v_{n}\right\}$ be a basis of \mathbb{R}^{n}. If a vector \mathbf{y} has the representation

$$
\operatorname{Rep}_{\mathcal{B}}(\mathbf{y})=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] .
$$

How do you recover \mathbf{y} from $\operatorname{Rep}_{\mathcal{B}}(\mathbf{y})$? Indeed, find a matrix \mathbf{A} such that

$$
\mathbf{y}=\mathbf{A} \operatorname{Rep}_{\mathcal{B}}(\mathbf{y})
$$

Conversely, how do you find $\operatorname{Rep}_{\mathcal{B}}(\mathbf{y})$ from \mathbf{y} ? Find a matrix \mathbf{B} such that

$$
\operatorname{Rep}_{\mathcal{B}}(\mathbf{y})=\mathrm{By} .
$$

