Sample Questions 10

1. Let

$$
\mathbf{A}=\left[\begin{array}{cccc}
2 & 0 & 3 & 4 \\
0 & 1 & 1 & -1 \\
3 & 1 & 0 & 2 \\
1 & 0 & -4 & -1
\end{array}\right]
$$

For each of the row space, the column space, and the null space of \mathbf{A}, find a basis and determine the dimension.
2. Let

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 3 & -1 & 2 \\
2 & 1 & 1 & 0 \\
0 & 1 & 1 & 4
\end{array}\right]
$$

For each of the row space, the column space, and the null space of \mathbf{A}, find a basis and determine the dimension.
3. Given $a, b, c \in \mathbb{R}$ with $a \neq 0$, find a value of d (in terms of a, b, and c) so that the rank of the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is 1 .
4. A linear system is said to be consistent if there is at least one solution. Prove that a linear system $\mathbf{A x}=\mathbf{b}$ is consistent if and only if that the rank of \mathbf{A} is the same as the rank of the augmented matrix $[\mathbf{A} \mid \mathbf{b}]$.
5. An $m \times n$ matrix has full row rank if its row rank is m, and it has full column rank if its column rank is n. Let \mathbf{A} be an $m \times n$ matrix.
(a) Prove that $\mathbf{A x}=\mathbf{b}$ is consistent for any $\mathbf{b} \in \mathbb{R}^{\mathrm{m}}$ if and only if \mathbf{A} has full row rank.
(b) Prove that $\mathbf{A x}=\mathbf{b}$ has a unique solution for any $\mathbf{b} \in \mathbb{R}^{m}$ making $\mathbf{A x}=\mathbf{b}$ consistent if and only if \mathbf{A} has full column rank.
6. Let A and B be two matrices. Prove that

$$
\operatorname{rank}(\mathbf{A}+\mathbf{B}) \leqslant \operatorname{rank}(\mathbf{A})+\operatorname{rank}(\mathbf{B})
$$

and

$$
\operatorname{rank}(\mathbf{A B}) \leqslant \min \{\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B})\} .
$$

7. Use the Exchange Lemma to prove the "Extension Lemma": Let B be a basis of a space V with $|B|=n$. If D is a linearly independent set with $|\mathrm{D}|=\mathrm{m}$ and $m<n$, then there is a subset $B^{\prime} \subseteq B$ with $\left|B^{\prime}\right|=n-m$ such that $D \cup B^{\prime}$ is a basis. (This is another way to show every basis has the same size, so do not use Theorem Two.III.2.5.)
