Sample Questions 1

1. Find an echelon form for each of the linear systems. How many solutions does the system have? [unique, none, or many]
(a) $\left\{\begin{array}{l}x+y=5 \\ x-4 y=0\end{array}\right.$
(b) $\left\{\begin{aligned}-x-y & =1 \\ -3 x-3 y & =2\end{aligned}\right.$
(c) $\left\{\begin{aligned} 4 y+z & =20 \\ 2 x-2 y+z & =0 \\ 2 x+2 y+2 z & =20 \\ 2 x-6 y & =-20\end{aligned}\right.$
2. Find the value k such that the following linear system has many solutions.

$$
\left\{\begin{aligned}
x-y & =1 \\
3 x-3 y & =k
\end{aligned}\right.
$$

3. Find the value k such that the following linear system has many solutions.

$$
\left\{\begin{aligned}
x+2 y+3 z & =10 \\
2 x-2 y+z & =5 \\
x+8 y+8 z & =k
\end{aligned}\right.
$$

4. Find the condition(s) for the b^{\prime} s so that the following linear system has at least a solution.

$$
\left\{\begin{aligned}
x-3 y & =b_{1} \\
3 x+y & =b_{2} \\
x+7 y & =b_{3} \\
2 x+4 y & =b_{4}
\end{aligned}\right.
$$

5. Find the coefficients a, b, and c so that the graph of $f(x)=a x^{2}+b x+c$ passes through the points $(1,2),(-1,6)$ and $(2,3)$.
6. Suppose $\left\{\begin{array}{r}x+y=1 \\ 4 x-y=6\end{array}\right.$. Can you derive $11 x+y=27$? That is, find a and b the following equality holds.

$$
\begin{array}{rlr}
x+y & =5 & {[\times a]} \\
+) & x x-y & =6 \\
\hline 11 x+y & =27
\end{array}
$$

7. Four positive integers are given. Select any three of the integers, find their arithmetic average, and add this result to the fourth integer. Thus the numbers $29,23,21$, and 17 are obtained. What are the four original integers?
