線性代數（一）
第二次期中考

姓名 Name： \qquad
學號 Student ID \＃： \qquad

Lecturer：Jephian Lin 林晉宏
Contents：cover page， 7 pages of questions， score page at the end
To be answered：on the test paper
Duration： 110 minutes
Total points： $\mathbf{3 0}$ points +2 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－可用中文或英文作答

1. [1pt] Let $S \subseteq \mathbb{R}^{3}$ be a set of vectors. Give an example of S such that S is linearly independent and $\operatorname{span}(S) \neq \mathbb{R}^{3}$.
2. [1pt] Let $S \subseteq \mathbb{R}^{3}$ be a set of vectors. Give an example of S such that $\operatorname{span}(S)=\mathbb{R}^{3}$ and S is not linearly independent.
3. [1pt] Let $S \subseteq \mathbb{R}^{3}$ be a set of vectors. Give an example of S such that S is linearly independent and $\operatorname{span}(S)=\mathbb{R}^{3}$.
4. $[1 \mathrm{pt}]$ Let $V \subseteq \mathbb{R}^{3}$ be a set of vectors. Give an example of V such that V is a subspace of \mathbb{R}^{3}.
5. [1pt] Let $V \subseteq \mathbb{R}^{3}$ be a set of vectors. Give an example of V such that V is a not subspace of \mathbb{R}^{3}.
6. [5pt] Find the inverse of the matrix

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 5 & -1 & 1 \\
-3 & -14 & 2 & -7 \\
15 & 70 & -9 & 31 \\
-13 & -61 & 8 & -24
\end{array}\right]
$$

7. [5pt] Let

$$
V=\operatorname{span}\left(\left\{\left[\begin{array}{c}
1 \\
-5 \\
4
\end{array}\right],\left[\begin{array}{c}
-1 \\
5 \\
-4
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-4 \\
20 \\
-16
\end{array}\right],\left[\begin{array}{c}
1 \\
-4 \\
4
\end{array}\right]\right\}\right) .
$$

Find a basis and the dimension of V.
8. Let

$$
\boldsymbol{A}=\left[\begin{array}{ccccc}
1 & -1 & 0 & -4 & 1 \\
-5 & 5 & 0 & 20 & -4 \\
4 & -4 & 0 & -16 & 4
\end{array}\right]
$$

(a) $[2 \mathrm{pt}]$ Find a basis and the dimension of the row space of \boldsymbol{A}.
(b) [3pt] Find a basis and the dimension of the null space of \boldsymbol{A}.
9. [5pt] Let

$$
\mathbf{A}=\left[\begin{array}{ccccc}
? & ? & ? & ? & a_{5} \\
? & a_{2} & ? & ? & 0 \\
? & 0 & ? & a_{4} & 0 \\
? & 0 & a_{3} & 0 & 0 \\
a_{1} & 0 & 0 & 0 & 0
\end{array}\right]
$$

be a 5×5 real matrix such that a_{1}, \ldots, a_{5} are nonzero and each question mark represents an unknown value. Show that the columns of A form a linearly independent set.
10. [5pt] Let $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ be a basis of some vector space V. Let $\mathbf{y}_{1}=\mathbf{x}_{1}+\mathbf{x}_{2}$, $\mathbf{y}_{2}=\mathbf{x}_{1}-\mathbf{x}_{2}$, and $\mathbf{y}_{3}=\mathbf{x}_{3}$. Show that $\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}\right\}$ is also a basis of V.
11. [extra 2pt] Let

$$
\begin{aligned}
f_{1} & =\frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)} \\
f_{2} & =\frac{(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)} \\
f_{3} & =\frac{(x-1)(x-2)(x-4)}{(3-1)(3-2)(3-4)}, \text { and } \\
f_{4} & =\frac{(x-1)(x-2)(x-3)}{(4-1)(4-2)(4-3)}
\end{aligned}
$$

be four polynomials. Show that any polynomial f of degree at most 3 can be written as a linear combination of f_{1}, \ldots, f_{4}. That is, for a given

$$
f=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
$$

find coefficients $c_{1}, \ldots, c_{4} \in \mathbb{R}$ such that

$$
f=c_{1} f_{1}+c_{2} f_{2}+c_{3} f_{3}+c_{4} f_{4}
$$

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	2	
Total	$30(+2)$	

