線性代數（一）
 MATH 103 ／GEAI 1215：Linear Algebra I

第一次期中考
October 14， 2019
Midterm 1

姓名 Name： \qquad
學號 Student ID \＃： \qquad

Lecturer：	Jephian Lin 林厽宏
Contents：	cover page，
	$\mathbf{6}$ pages of questions，
	score page at the end
To be answered：	on the test paper
Duration：	$\mathbf{1 1 0}$ minutes
Total points：	$\mathbf{2 5}$ points +2 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－可用中文或英文作答

1. [1pt] Write down an example of a system of linear equations in variables a, b, and c.
2. [1pt] Write down an example of a system of equations in variables a, b, and c that is not a linear system.
3. [1pt] Write down an example of a system of three linear equations in its echelon form that contains two free variables.
4. [1pt] Write down an example of a 4×4 nonsingular matrix.
5. [1pt] Write down an example of a 4×4 singular matrix.
6. Let

$$
\mathbf{u}=\left[\begin{array}{c}
2 \\
3 \\
\sqrt{5} \\
0
\end{array}\right] \text { and } \mathbf{v}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]
$$

(a) $[1 \mathrm{pt}]$ Find the length $|\mathbf{u}|$.
(b) $[1 \mathrm{pt}]$ Find the length $|\mathbf{v}|$.
(c) $[1 \mathrm{pt}]$ Find the angle between \mathbf{u} and \mathbf{v}.
(d) $[2 \mathrm{pt}]$ Find a vector \mathbf{w} such that the angle between \mathbf{w} and \mathbf{v} is $\frac{\pi}{4}$. [The answer is not unique. You only need to find one.]
7. [5pt] Find the general solution of the following linear system.

$$
\left\{\begin{aligned}
w-2 x-2 y+7 z & =-12 \\
-2 w+4 x+5 y-19 z & =28 \\
-4 w+8 x+11 y-43 z & =60
\end{aligned}\right.
$$

That is, find \mathbf{p} and $\boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{k}$ such that

$$
\left\{\mathbf{p}+c_{1} \boldsymbol{\beta}_{1}+\cdots+c_{k} \boldsymbol{\beta}_{k}: c_{1}, \ldots, c_{k} \in \mathbb{R}\right\}
$$

is the set of all solutions.
8. [5pt] Let

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 2 & -1 & -18 \\
-1 & -1 & -1 & 3 \\
4 & 4 & 5 & -7
\end{array}\right] \text { and } \mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 0 & -5 \\
0 & 0 & 1 & 5
\end{array}\right]
$$

It is known that \mathbf{R} is the reduced echelon form of \mathbf{A}. Write the row $\left[\begin{array}{llll}1 & 0 & 0 & -3\end{array}\right]$ as a linear combination of rows of \mathbf{A}.
9. [5pt] Let

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 9 & 9
\end{array}\right] \text { and } \mathbf{B}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
8 & 8 & 9
\end{array}\right] .
$$

Is it possible to obtain \mathbf{B} from \mathbf{A} by some row operations? [This is a yes-or-no question, but you have to justify your answer.]
10. [extra 2pt] It is known that the following row operations are correct.

$$
\left[\begin{array}{l}
13 \\
23
\end{array}\right] \xrightarrow{-\rho_{1}+\rho_{2}}\left[\begin{array}{l}
13 \\
10
\end{array}\right] \xrightarrow{-\rho_{2}+\rho_{1}}\left[\begin{array}{c}
3 \\
10
\end{array}\right] \xrightarrow{-3 \rho_{1}+\rho_{2}}\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Find two integers a and b such that $a \cdot 13+b \cdot 23=1$.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	2	
Total	$25(+2)$	

