國立中山大學	NATIONAL SUN YAT-SEN UNIVERSITY		
線性代數(一)	MATH 103 / GEAI 1215: Linear Algebra I		
第一次期中考	October 14, 2019 Midterm 1		
姓名 Name :		_	
學號 Student ID # :_		_	
	Lecturer:	Jephian Lin 林晉宏	
	Contents:	cover page,	
		6 pages of questions,	
		score page at the end	
	To be answered:	on the test paper	

Total points: **25 points** + 2 extra points

Duration: 110 minutes

Do not open this packet until instructed to do so.

Instructions:

- Enter your **Name** and **Student ID** # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by **underlining it or circling it**. If multiple answers are shown then no marks will be awarded.
- 可用中文或英文作答

1. [1pt] Write down an example of a system of **linear** equations in variables x, y, and z.

2. [1pt] Write down an example of a system of equations in variables x, y, and z that is **not a linear system**.

3. [1pt] Write down an example of a system of **two linear equations** in its **echelon form** that contains **three free variables**.

4. [1pt] Write down an example of a 4×4 singular matrix.

5. [1pt] Write down an example of a 4×4 nonsingular matrix.

6. Let

$$\mathbf{u} = \begin{bmatrix} 2\\ -3\\ \sqrt{5}\\ 0 \end{bmatrix} \text{ and } \mathbf{v} = \begin{bmatrix} 0\\ 1\\ 0\\ 1 \end{bmatrix}.$$

(a) [1pt] Find the length $|\mathbf{u}|$.

(b) [1pt] Find the length $|\mathbf{v}|$.

(c) [1pt] Find the angle between \mathbf{u} and \mathbf{v} .

(d) [2pt] Find a vector \mathbf{w} such that the angle between \mathbf{w} and \mathbf{v} is $\frac{\pi}{4}$. [The answer is not unique. You only need to find one.]

7. [5pt] Find the general solution of the following linear system.

$$\begin{cases} w + x - 2y = -2\\ 5w + 5x - 10y + z = -15\\ 9w + 9x - 18y + 2z = -28 \end{cases}$$

That is, find \mathbf{p} and $\boldsymbol{\beta}_1, \ldots, \boldsymbol{\beta}_k$ such that

$$\{\mathbf{p}+c_1\boldsymbol{\beta}_1+\cdots+c_k\boldsymbol{\beta}_k:c_1,\ldots,c_k\in\mathbb{R}\}$$

is the set of all solutions.

8. [5pt] Let

$$\mathbf{A} = \begin{bmatrix} 1 & 4 & -5 & 4 \\ -1 & -4 & 6 & -1 \\ 3 & 12 & -13 & 19 \end{bmatrix} \text{ and } \mathbf{R} = \begin{bmatrix} 1 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

It is known that **R** is the reduced echelon form of **A**. Write the row $\begin{bmatrix} 1 & 4 & 0 & 0 \end{bmatrix}$ as a linear combination of rows of **A**.

9. [5pt] Let

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 9 & 9 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{bmatrix}.$$

Is it possible to obtain \mathbf{B} from \mathbf{A} by some row operations? [This is a yes-or-no question, but you have to justify your answer.]

10. [extra 2pt] It is known that the following row operations are correct.

$$\begin{bmatrix} 13\\23 \end{bmatrix} \xrightarrow{-\rho_1 + \rho_2} \begin{bmatrix} 13\\10 \end{bmatrix} \xrightarrow{-\rho_2 + \rho_1} \begin{bmatrix} 3\\10 \end{bmatrix} \xrightarrow{-3\rho_1 + \rho_2} \begin{bmatrix} 3\\1 \end{bmatrix}$$

Find two integers a and b such that $a \cdot 13 + b \cdot 23 = 1$.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	2	
Total	25 (+2)	