\qquad
學號 Student ID \＃： \qquad

Lecturer：Jephian Lin 林晉宏
Contents：cover page， 8 pages of questions， score page at the end
To be answered：on the test paper
Duration： 110 minutes
Total points： $\mathbf{3 0}$ points +7 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－可用中文或英文作答

1. [1pt] Write down an example of a system of linear equations in variables a, b, and c.
2. [1pt] Write down an example of a system of equations in variables a, b, and c that is not a linear system.
3. [1pt] Write down an example of a system of three linear equations in its echelon form that contains two free variables.
4. [1pt] Write down an example of a 4×4 nonsingular matrix.
5. [1pt] Write down an example of a 4×4 singular matrix.
6. [1pt] Let $S \subseteq \mathbb{R}^{3}$ be a set of vectors. Give an example of S such that S is linearly independent and $\operatorname{span}(S) \neq \mathbb{R}^{3}$.
7. [1pt] Let $S \subseteq \mathbb{R}^{3}$ be a set of vectors. Give an example of S such that $\operatorname{span}(S)=\mathbb{R}^{3}$ and S is not linearly independent.
8. [1pt] Let $S \subseteq \mathbb{R}^{3}$ be a set of vectors. Give an example of S such that S is linearly independent and $\operatorname{span}(S)=\mathbb{R}^{3}$.
9. [1pt] Let $V \subseteq \mathbb{R}^{3}$ be a set of vectors. Give an example of V such that V is a subspace of \mathbb{R}^{3}.
10. [1pt] Let $V \subseteq \mathbb{R}^{3}$ be a set of vectors. Give an example of V such that V is a not subspace of \mathbb{R}^{3}.
11. [1pt] Give an example of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that f is not a homomorphism.
12. [1pt] Give an example of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that f is a homomorphism but not an isomorphism.
13. [1pt] Give an example of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that f is an isomorphism.
14. [1pt] Suppose V_{1} and V_{2} are two subspaces of \mathbb{R}^{3}. Give an example of V_{1} and V_{2} such that they are not linearly independent (in terms of subspaces).
15. [1pt] Suppose V_{1} and V_{2} are two subspaces of \mathbb{R}^{3}. Give an example of V_{1} and V_{2} such that they are linearly independent (in terms of subspaces).
16. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ and $\mathcal{D}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ with

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \text { and } \mathbf{u}_{2}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Define a homomorphism $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $f\left(\mathbf{v}_{1}\right)=4 \mathbf{u}_{1}, f\left(\mathbf{v}_{2}\right)=$ $6 \mathbf{u}_{2}$, and $f\left(\mathbf{v}_{3}\right)=8 \mathbf{u}_{1}+8 \mathbf{u}_{2}$.
(a) $[2 \mathrm{pt}]$ Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{D}}(f)$.
(b) $[3 \mathrm{pt}]$ Find a matrix A such that $f(\mathbf{v})=A \mathbf{v}$ for any $\mathbf{v} \in \mathbb{R}^{3}$.
17. [5pt] Let $f: V \rightarrow W$ be a homomorphism. Show that $f(X)$ is a subspace of W if X is a subspace of V.
18. [5pt] Let $f: V \rightarrow W$ be a homomorphism. Show that f is one-to-one if and only if the null space of f is $\{\mathbf{0}\}$.
19. Let $E_{i j}$ be the 2×3 matrix whose entries are all zeros except that the i, j-entry is one. Then

$$
\mathcal{B}=\left\{E_{11}, E_{12}, E_{13}, E_{21}, E_{22}, E_{23}\right\}
$$

is a basis of $\mathcal{M}_{2 \times 3}$, the space of all 2×3 real matrices. Suppose f : $\mathcal{M}_{2 \times 3} \rightarrow \mathcal{M}_{2 \times 3}$ is a homomorphism such that $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ equals

$$
A=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

(a) [extra 1pt] Let $M=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$. Find $f(M)$.
(b) [extra 2pt] Find the range of f.
(c) $[$ extra 2pt] Find the nullspace of f.
20. [extra 2pt] Recall that $\mathcal{L}(V, W)$ is the space of all homomorphisms from V to W. Let $V=\mathcal{M}_{4 \times 5}$ be the space of all 4×5 real matrices. Let $W=\mathcal{P}_{100}$ be the space of all polynomials with real coefficients and of degree at most 100. Answer the following questions:
(a) What is the zero vector in $\mathcal{L}(V, W)$?
(b) What is the dimension of V ?
(c) What is the dimension of W ?
(d) What is the dimension of $\mathcal{L}(V, W)$?

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	5	
8	2	
Total	$30(+7)$	

