國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

線性代數 (一)

MATH 103 / GEAI 1215: Linear Algebra I

期末考

January 6, 2020

Final Examination

姓名 Name : _____

學號 Student ID # : _____

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

8 pages of questions, score page at the end

To be answered: on the test paper

Duration: 110 minutes

Total points: 30 points + 7 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your **Name** and **Student ID** # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining
 it or circling it. If multiple answers are shown then no marks will be
 awarded.
- 可用中文或英文作答

1.	[1pt]	Write	down	an e	example	of a	system	of	linear	equations	in	variables
	a, b,	and c .										

2. [1pt] Write down an example of a system of equations in variables a, b, and c that is **not a linear system**.

3. [1pt] Write down an example of a system of three linear equations in its echelon form that contains two free variables.

4. [1pt] Write down an example of a 4×4 nonsingular matrix.

5. [1pt] Write down an example of a 4×4 singular matrix.

6. [1pt] Let $S \subseteq \mathbb{R}^3$ be a set of vectors. Give an example of S such that S is linearly independent and $\operatorname{span}(S) \neq \mathbb{R}^3$.

7. [1pt] Let $S \subseteq \mathbb{R}^3$ be a set of vectors. Give an example of S such that $\operatorname{span}(S) = \mathbb{R}^3$ and S is not linearly independent.

8. [1pt] Let $S \subseteq \mathbb{R}^3$ be a set of vectors. Give an example of S such that S is linearly independent and $\operatorname{span}(S) = \mathbb{R}^3$.

9. [1pt] Let $V \subseteq \mathbb{R}^3$ be a set of vectors. Give an example of V such that V is a subspace of \mathbb{R}^3 .

10. [1pt] Let $V \subseteq \mathbb{R}^3$ be a set of vectors. Give an example of V such that V is a not subspace of \mathbb{R}^3 .

11. [1pt] Give an example of a function $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that f is not a homomorphism.

12. [1pt] Give an example of a function $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that f is a homomorphism but not an isomorphism.

13. [1pt] Give an example of a function $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that f is an isomorphism.

14. [1pt] Suppose V_1 and V_2 are two subspaces of \mathbb{R}^3 . Give an example of V_1 and V_2 such that they are not linearly independent (in terms of subspaces).

15. [1pt] Suppose V_1 and V_2 are two subspaces of \mathbb{R}^3 . Give an example of V_1 and V_2 such that they are linearly independent (in terms of subspaces).

16. Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and $\mathcal{D} = \{\mathbf{u}_1, \mathbf{u}_2\}$ with

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \text{ and } \mathbf{u}_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}.$$

Define a homomorphism $f: \mathbb{R}^3 \to \mathbb{R}^2$ such that $f(\mathbf{v}_1) = 4\mathbf{u}_1$, $f(\mathbf{v}_2) = 6\mathbf{u}_2$, and $f(\mathbf{v}_3) = 8\mathbf{u}_1 + 8\mathbf{u}_2$.

(a) [2pt] Find $Rep_{\mathcal{B},\mathcal{D}}(f)$.

(b) [3pt] Find a matrix A such that $f(\mathbf{v}) = A\mathbf{v}$ for any $\mathbf{v} \in \mathbb{R}^3$.

17. [5pt] Let $f: V \to W$ be a homomorphism. Show that f(X) is a subspace of W if X is a subspace of V.

18. [5pt] Let $f: V \to W$ be a homomorphism. Show that f is one-to-one if and only if the null space of f is $\{0\}$.

19. Let E_{ij} be the 2×3 matrix whose entries are all zeros except that the i, j-entry is one. Then

$$\mathcal{B} = \{E_{11}, E_{12}, E_{13}, E_{21}, E_{22}, E_{23}\}$$

is a basis of $\mathcal{M}_{2\times 3}$, the space of all 2×3 real matrices. Suppose $f: \mathcal{M}_{2\times 3} \to \mathcal{M}_{2\times 3}$ is a homomorphism such that $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$ equals

(a) [extra 1pt] Let $M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$. Find f(M).

(b) [extra 2pt] Find the range of f.

(c) [extra 2pt] Find the nullspace of f.

- 20. [extra 2pt] Recall that $\mathcal{L}(V, W)$ is the space of all homomorphisms from V to W. Let $V = \mathcal{M}_{4\times 5}$ be the space of all 4×5 real matrices. Let $W = \mathcal{P}_{100}$ be the space of all polynomials with real coefficients and of degree at most 100. Answer the following questions:
 - (a) What is the zero vector in $\mathcal{L}(V, W)$?
 - (b) What is the dimension of V?
 - (c) What is the dimension of W?
 - (d) What is the dimension of $\mathcal{L}(V, W)$?

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	5	
8	2	
Total	30 (+7)	