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1. [1pt] Write down an example of a system of linear equations in variables
x, y, and z.

2. [1pt] Write down an example of a system of equations in variables x, y,
and z that is not a linear system.

3. [1pt] Write down an example of a system of two linear equations in
its echelon form that contains three free variables.

4. [1pt] Write down an example of a 4× 4 singular matrix.

5. [1pt] Write down an example of a 4× 4 nonsingular matrix.
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6. [1pt] Let S ⊆ R3 be a set of vectors. Give an example of S such that
span(S) = R3 and S is not linearly independent.

7. [1pt] Let S ⊆ R3 be a set of vectors. Give an example of S such that S
is linearly independent and span(S) 6= R3.

8. [1pt] Let S ⊆ R3 be a set of vectors. Give an example of S such that S

is linearly independent and span(S) = R3.

9. [1pt] Let V ⊆ R3 be a set of vectors. Give an example of V such that V

is a not subspace of R3.

10. [1pt] Let V ⊆ R3 be a set of vectors. Give an example of V such that V
is a subspace of R3.
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11. [1pt] Give an example of a function f : R2 → R2 such that f is an
isomorphism.

12. [1pt] Give an example of a function f : R2 → R2 such that f is a homo-
morphism but not an isomorphism.

13. [1pt] Give an example of a function f : R2 → R2 such that f is not a
homomorphism.

14. [1pt] Suppose V1 and V2 are two subspaces of R3. Give an example of V1

and V2 such that they are linearly independent (in terms of subspaces).

15. [1pt] Suppose V1 and V2 are two subspaces of R3. Give an example
of V1 and V2 such that they are not linearly independent (in terms of
subspaces).
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16. Let B = {v1,v2,v3} and D = {u1,u2} with

v1 =

1
1
1

 ,v2 =

0
1
1

 ,v3 =

0
0
1

 ,u1 =

[
2
3

]
, and u2 =

[
3
2

]
.

Define a homomorphism f : R3 → R2 such that f(v1) = 5u1, f(v2) =
7u2, and f(v3) = 9u1 + 9u2.

(a) [2pt] Find RepB,D(f).

(b) [3pt] Find a matrix A such that f(v) = Av for any v ∈ R3.
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17. [5pt] Let f : V → W be a homomorphism. Show that f(X) is a subspace
of W if X is a subspace of V .
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18. [5pt] Let f : V → W be a homomorphism. Show that f is one-to-one if
and only if the null space of f is {0}.
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19. Let Eij be the 2 × 3 matrix whose entries are all zeros except that the
i, j-entry is one. Then

B = {E11, E12, E13, E21, E22, E23}

is a basis of M2×3, the space of all 2 × 3 real matrices. Suppose f :
M2×3 →M2×3 is a homomorphism such that RepB,B(f) equals

A =



1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0

 .

(a) [extra 1pt] Let M =

[
1 2 3
4 5 6

]
. Find f(M).

(b) [extra 2pt] Find the range of f .

(c) [extra 2pt] Find the nullspace of f .
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20. [extra 2pt] Recall that L(V,W ) is the space of all homomorphisms from
V to W . Let V = M4×5 be the space of all 4 × 5 real matrices. Let
W = P100 be the space of all polynomials with real coefficients and of
degree at most 100. Answer the following questions:

(a) What is the zero vector in L(V,W )?

(b) What is the dimension of V ?

(c) What is the dimension of W?

(d) What is the dimension of L(V,W )?

[END]
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