## Math555 Midterm 2

Note: Use other papers to answer the problems. Remember to write down your name and your student ID \#.

1. [4pt] Let $\phi(n)$ be the Euler's totient function. That is, $\phi(n)$ is the number of integers $k$ with $\operatorname{gcd}(k, n)=1$ and $1 \leqslant k \leqslant n$. Consider $n=16$ and the set $[n]=\{1, \ldots, 16\}$. Let

$$
A_{d}=\{k \in[n]: \operatorname{gcd}(k, n)=d\}
$$

For each $d \mid n$, find $A_{d}$ and verify $\left|A_{d}\right|=\phi(n / d)$.
Solution. The value of $d$ can be $1,2,4,8,16$.

$$
\begin{aligned}
A_{1} & =\{1,3,5,7,9,11,13,15\} \\
A_{2} & =\{2,6,10,14\} \\
A_{4} & =\{4,12\} \\
A_{8} & =\{8\} \\
A_{16} & =\{16\}
\end{aligned}
$$

Then verify the $\left|A_{d}\right|=\phi(n / d)$.

$$
\begin{aligned}
\phi(16 / 1) & =\phi(16)=2^{4}-2^{3}=8 \\
\phi(16 / 2) & =\phi(8)=2^{3}-2^{2}=4 \\
\phi(16 / 4) & =\phi(4)=2 \\
\phi(16 / 8) & =\phi(2)=1 \\
\phi(16 / 16) & =\phi(1)=1
\end{aligned}
$$

2. [4pt] Let $\mu(n)$ be the Möbius function. Prove that

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{cases}
$$

Solution. Suppose $n=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}$ is the prime decomposition of $n$. Then every $d \mid n$ can be written as $d=p_{1}^{b_{1}} \cdots p_{r}^{b_{r}}$ with $0 \leqslant b_{i} \leqslant a_{i}$. Thus, $\mu(d)=0$ whenever one of the power $b_{i}$ is at least 2 . Therefore,

$$
\begin{aligned}
\sum_{\mathrm{d} \mid n} \mu(\mathrm{~d}) & =\sum_{\substack{0 \leqslant b_{i} \leqslant 1 \\
\text { for all } i}} \mu\left(p_{1}^{\mathrm{b}_{1}} \cdots p_{r}^{\mathrm{b}_{r}}\right) \\
& =\sum_{\mathrm{I} \subseteq\{1, \ldots, r\}}(-1)^{|\mathrm{I}|} \\
& =\sum_{k=0, \ldots, r}(-1)^{\mathrm{k}}\binom{r}{k} \\
& =(1-1)^{r}= \begin{cases}1 & \text { if } n=1, \\
0 & \text { if } n>1 .\end{cases}
\end{aligned}
$$

3. [4pt] Suppose $x_{n}$ is an integer for every $n \geqslant 1$ and

$$
y_{n}=\sum_{\mathrm{d} \mid \mathrm{n}} x_{\mathrm{d}} .
$$

If $y_{n}=n^{2}$ for every $n \geqslant 1$. Use Möbius inversion to find $x_{24}$. Solution. By Möbius inversion,

$$
\begin{aligned}
x_{24}= & y_{1} \mu(24)+y_{2} \mu(12)+y_{3} \mu(8)+y_{4} \mu(6) \\
& +y_{6} \mu(4)+y_{8} \mu(3)+y_{12} \mu(2)+y_{24} \mu(1) \\
= & 0+0+0+16+0-64-144+576=384 .
\end{aligned}
$$

4. [4pt] Solve the recurrence relation below.

$$
\left\{\begin{array}{l}
a_{n}+0 a_{n-1}-3 a_{n-2}-2 a_{n-3}=0 \\
a_{0}=4, a_{1}=-3, a_{2}=11
\end{array}\right.
$$

Solution. The characteristic polynomial is

$$
p(x)=x^{3}-3 x-2=(x+1)^{2}(x-2)
$$

with the roots $-1,-1,2$. Thus, the formula for $a_{n}$ is

$$
a_{n}=A \cdot(-1)^{n}+B \cdot n(-1)^{n}+C \cdot 2^{n} .
$$

Substituting this equality with $n=0,1,2$, we get the following equations.

$$
\left\{\begin{aligned}
A+C & =4 \\
(-1) A+(-1) B+2 C & =-3 \\
A+2 B+4 C & =11
\end{aligned}\right.
$$

It follows that $A=3, B=2$, and $C=1$, so

$$
a_{n}=3(-1)^{n}+2 n(-1)^{n}+2^{n} .
$$

5. [4pt] Find the closed form of the generating function $\sum_{k \geqslant 0} k^{2} x^{k}$.

Solution. It is known that

$$
\sum_{k \geqslant 0} x^{k}=(1-x)^{-1}
$$

Next compute

$$
\begin{aligned}
\sum_{k \geqslant 0} k x^{k} & =x \sum_{k \geqslant 1} k x^{k-1} \\
& =x\left(\sum_{k \geqslant 1} x^{k}\right)^{\prime} \\
& =x\left[(1-x)^{-1}-1\right]^{\prime}=x(1-x)^{-2}
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{k \geqslant 0} k^{2} x^{k} & =x \sum_{k \geqslant 1} k^{2} x^{k-1} \\
& =x\left(\sum_{k \geqslant 1} k x^{k}\right)^{\prime} \\
& =x\left[x(1-x)^{-2}\right]^{\prime}=x(1-x)^{-2}+2 x^{2}(1-x)^{-3} .
\end{aligned}
$$

