Math555 Midterm 1

Note: Use other papers to answer the problems. Remember to write down your name and your student ID \#.

1. [4pt] Use Newton's binomial theorem to prove that

$$
(1-4 x)^{-1 / 2}=\sum_{n \geqslant 0}\binom{2 n}{n} x^{n}
$$

Then use it to prove that, for every positive integer n,

$$
\sum_{i=0}^{n}\binom{2 i}{i}\binom{2(n-i)}{n-i}=4^{n}
$$

Solution. By Newton's binomial theorem

$$
(1-4 x)^{-1 / 2}=\sum_{n \geqslant 0}\binom{-1 / 2}{n}(-4)^{n} x^{n}
$$

We may compute

$$
\begin{aligned}
\binom{-1 / 2}{n}(-4)^{n} & =(-1)^{n} 2^{2 n} \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \cdots\left(-\frac{2 n-1}{2}\right)}{n!} \\
& =2^{n} \cdot \frac{(1)(3) \cdots(2 n-1)}{n!} \\
& =\frac{(2)(4) \cdots(2 n)}{n!} \cdot \frac{(1)(3) \cdots(2 n-1)}{n!} \\
& =\binom{2 n}{n} .
\end{aligned}
$$

Consider

$$
\begin{aligned}
(1-4 x)^{-1} & =\left(\sum_{n \geqslant 0}\binom{2 n}{n} x^{n}\right)\left(\sum_{n \geqslant 0}\binom{2 n}{n} x^{n}\right) \\
& =\left(\sum_{i \geqslant 0}\binom{2 i}{i} x^{n}\right)\left(\sum_{i \geqslant 0}\binom{2 j}{j} x^{n}\right) .
\end{aligned}
$$

To see the desired equality, compare the coefficients of x^{n} on both sides.
2. [4pt] Prove that if $j \geqslant 2$, then

$$
\ln \mathfrak{j} \geqslant \int_{j-1 / 2}^{j+1 / 2} \ln x d x
$$

and use it to prove that

$$
n!\geqslant \sqrt{\frac{8 e^{2} n}{27}}\left(\frac{n}{e}\right)^{n}
$$

Solution. Since $\ln x$ is concave down, it is below its tangent lines. The tangent line of $\ln x$ at j is $y=\frac{1}{j}(x-\mathfrak{j})+\ln (\mathfrak{j})$, so

$$
\ln \mathfrak{j}=\int_{j-\frac{1}{2}}^{\mathfrak{j}+\frac{1}{2}} \frac{1}{\mathfrak{j}}(x-\mathfrak{j})+\ln \mathfrak{j} d x \geqslant \int_{j-\frac{1}{2}}^{\mathfrak{j}+\frac{1}{2}} \ln x d x
$$

for $j>\frac{1}{2}$. Therefore,

$$
\begin{aligned}
\ln (n!)=\sum_{j=2}^{n} \ln j & \geqslant \int_{\frac{3}{2}}^{n+\frac{1}{2}} \ln x d x \\
& =(n+0.5) \ln (n+0.5)-1.5 \ln 1.5-(n-1)
\end{aligned}
$$

So

$$
n!\geqslant \frac{(n+0.5)^{n+0.5}}{1.5^{1.5} e^{n-1}} \geqslant \sqrt{\frac{8 e^{2} n}{27}}\left(\frac{n}{e}\right)^{n}
$$

3. [4pt] Let $p_{k}(n)$ denote the number of partitions of integer n into k parts. Fix an integer $t \geqslant 0$. Show that as $n \rightarrow \infty, p_{n-t}(n)$ becomes eventually constant value $f(t)$. What is the $f(t)$? What is the least value of n for which $p_{n-t}(n)=f(t)$?
[Recall that $p_{k}(n)=p_{k-1}(n-1)+p_{k}(n-k)$.]
Solution. By the recurrence relation,

$$
p_{n-t}(n)=p_{n-1-t}(n-1)+p_{n-t}(t)
$$

This means $p_{n-t}(n)$ is an increasing sequence in terms of n. Observe that

$$
p_{n-t}(t) \begin{cases}\geqslant 0 & \text { if } n-t \leqslant t \\ =0 & \text { if } n-t>t\end{cases}
$$

Therefore, for fixed t, the sequence $p_{n-t}(n)$ is strictly increasing until $n=2 t$ and $p_{n-t}(n)=f(t)$ for all $n \geqslant 2 t$. Here

$$
f(t)=p_{t}(2 t)=\sum_{k=1}^{t} p_{k}(t)
$$

4. [4pt] Let

$$
x^{(n)}=(x+n-1)_{n}=x(x+1) \cdots(x+n-1)
$$

be the n-th rising factorial of x. Recall that

$$
\sum_{k \geqslant 0} c(n, k) x^{k}=x^{(n)},
$$

so $c(n, k)$ are the coefficoents that change the basis from $\mathcal{B}_{1}=\left\{x^{(0)}, x^{(1)}, \ldots\right\}$ to $\mathcal{B}_{2}=\left\{x^{0}, x^{1}, \ldots,\right\}$. Find the coefficients that change the basis from \mathcal{B}_{2} to \mathcal{B}_{1}. In other words, find the coefficients $A_{n, k}$ such that

$$
\sum_{k \geqslant 0} A_{n, k} x^{(k)}=x^{n}
$$

[Hint: You may use the Stirling numbers.]
Solution. Recall that

$$
\sum_{k \geqslant 0} S(n, k)(x)_{k}=x^{n}
$$

Substitute x by $-x$ and get

$$
\sum_{k \geqslant 0} S(n, k)(-x)_{k}=(-x)^{n}=(-1)^{n} x^{n}
$$

Note that

$$
\begin{aligned}
(-x)_{k} & =(-x)(-x-1) \cdots(-x-k+1) \\
& =(-1)^{k}(x)(x+1) \cdots(x+k-1) \\
& =(-1)^{k} x^{(k)}
\end{aligned}
$$

Therefore,

$$
\sum_{k \geqslant 0}(-1)^{n-k} S(n, k) x^{(k)}=x^{n}
$$

and $A_{n, k}=(-1)^{n-k} S(n, k)$ is the answer.
5. [4pt] Let N and X be two sets with $|N|=|X|=3$. Fill in the following table by the number of functions $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{X}$ with the given conditions.

N	X	Any f	injective f	surjective f
dist	dist	(i)	(ii)	(iii)
indist	dist	(iv)	(v)	(vi)
dist	indist	(vii)	(viii)	(ix)
indist	indist	(x)	(xi)	(xii)

Solution. Use the formulas given in the lecture notes.

N	X	Any f	injective f	surjective f
dist	dist	$3^{3}=27$	$(3)_{3}=6$	$3!\mathrm{S}(3,3)=6$
indist	dist	$\left(\binom{3}{3}\right)=10$	$\binom{3}{3}=1$	$\left(\binom{3}{0}=1\right.$
dist	indist	$\mathrm{S}(3,0)+\mathrm{S}(3,1)+\mathrm{S}(3,2)+\mathrm{S}(3,3)=5$	1	$\mathrm{~S}(3,3)=1$
indist	indist	$\mathrm{p}_{0}(3)+\mathrm{p}_{1}(3)+\mathrm{p}_{2}(3)+\mathrm{p}_{3}(3)=3$	1	$\mathrm{p}_{3}(3)=1$

