Math555 Midterm 1

Note: Use other papers to answer the problems. Remember to write down your name and your student ID \#.

1. [4pt] Use Newton's binomial theorem to prove that

$$
(1-4 x)^{-1 / 2}=\sum_{n \geqslant 0}\binom{2 n}{n} x^{n}
$$

Then use it to prove that, for every positive integer n,

$$
\sum_{i=0}^{n}\binom{2 i}{i}\binom{2(n-i)}{n-i}=4^{n}
$$

2. [4pt] Prove that if $j \geqslant 2$, then

$$
\ln \mathfrak{j} \geqslant \int_{j-1 / 2}^{j+1 / 2} \ln x d x
$$

and use it to prove that

$$
n!\geqslant \sqrt{\frac{8 e^{2} n}{27}}\left(\frac{n}{e}\right)^{n}
$$

3. [4pt] Let $p_{k}(n)$ denote the number of partitions of integer n into k parts. Fix an integer $t \geqslant 0$. Show that as $n \rightarrow \infty, p_{n-t}(n)$ becomes eventually constant value $f(t)$. What is the $f(t)$? What is the least value of n for which $p_{n-t}(n)=f(t)$?
[Recall that $\left.p_{k}(n)=p_{k-1}(n-1)+p_{k}(n-k).\right]$
4. [4pt] Let

$$
x^{(n)}=(x+n-1)_{n}=x(x+1) \cdots(x+n-1)
$$

be the n-th rising factorial of x. Recall that

$$
\sum_{k \geqslant 0} c(n, k) x^{k}=x^{(n)},
$$

so $c(n, k)$ are the coefficoents that change the basis from $\mathcal{B}_{1}=\left\{x^{(0)}, x^{(1)}, \ldots\right\}$ to $\mathcal{B}_{2}=\left\{x^{0}, x^{1}, \ldots,\right\}$. Find the coefficients that change the basis from \mathcal{B}_{2} to \mathcal{B}_{1}. In other words, find the coefficients $A_{n, k}$ such that

$$
\sum_{k \geqslant 0} A_{n, k} x^{(k)}=x^{n}
$$

[Hint: You may use the Stirling numbers.]
5. [4pt] Let N and X be two sets with $|N|=|X|=3$. Fill in the following table by the number of functions $f: N \rightarrow X$ with the given conditions.

N	X	Any f	injective f	surjective f
dist	dist	(i)	(ii)	(iii)
indist	dist	(iv)	(v)	(vi)
dist	indist	(vii)	(viii)	(ix)
indist	indist	(x)	(xi)	(xii)

