Math555 Homework 5

Note: To submit the k-th homework, simply put your files in the folder HWk on CoCalc, and it will be collected on the due day.

1. Recall that \mathcal{C}_n is the $n \times n$ board where rooks are only allowed on the positions

$$\{(i,i), (i,i+1): i = 1, ..., n\}.$$

Consider the cycle graph C_{2n} where vertices are $X \cup Y$ with

$$X = \{x_i : i = 1, ..., n\}$$
 and $Y = \{y_i : i = 1, ..., n\}$

and edges are

$$E = \{(x_i, y_i), (x_i, y_{i+1}) : i = 1, ..., n\}.$$

All subscripts are taking modulo n. A k-matching on a graph means a set of k edges such that none of them share a same vertex. Show that the number of k-matchings on C_{2n} is the number of ways to put k rooks on C_n in non-attacking positions.

Solution. Let M be a k-matching on C_{2n} . Then

$$\{(i,j):(x_i,y_j)\in M\}$$

is a non-attacking rook placement on \mathcal{C}_n . Conversely, if \mathcal{P} is a non-attacking placement on \mathcal{C}_n , then

$$\{(\mathbf{x}_{i},\mathbf{y}_{j}):(i,j)\in\mathcal{P}\}$$

forms a k-matching of C_{2n} .

2. Let $\phi(n)$ be the Euler's totient function. That is, $\phi(n)$ is the number of integers k with gcd(k, n) = 1 and $1 \le k \le n$. Consider n = 12 and the set $[n] = \{1, ..., 12\}$. Let

$$A_d = \{k \in [n] : gcd(k, n) = d\}.$$

For each d | n, find A_d and verify $|A_d| = \phi(n/d)$. **Solution.** The value of d can be 1, 2, 3, 4, 6, 12.

$$A_{1} = \{1, 5, 7, 11\}$$
$$A_{2} = \{2, 10\}$$
$$A_{3} = \{3, 9\}$$
$$A_{4} = \{4, 8\}$$
$$A_{6} = \{6\}$$
$$A_{12} = \{12\}$$

They verify the $|A_d| = \varphi(n/d)$.

$$\begin{aligned} \varphi(12/1) &= \varphi(12) = \varphi(3) \cdot \varphi(4) = 2 \cdot 2 = 4 \\ \varphi(12/2) &= \varphi(6) = \varphi(2) \cdot \varphi(3) = 1 \cdot 2 = 2 \\ \varphi(12/3) &= \varphi(4) = 2 \\ \varphi(12/4) &= \varphi(3) = 2 \\ \varphi(12/6) &= \varphi(2) = 1 \\ \varphi(12/12) &= \varphi(1) = 1 \end{aligned}$$