Math555 Homework 5

Note: To submit the k-th homework, simply put your files in the folder HWk on CoCalc, and it will be collected on the due day.

1. Recall that \mathcal{C}_{n} is the $n \times n$ board where rooks are only allowed on the positions

$$
\{(i, i),(i, i+1): i=1, \ldots, n\} .
$$

Consider the cycle graph $C_{2 n}$ where vertices are $X \cup Y$ with

$$
X=\left\{x_{i}: \mathfrak{i}=1, \ldots, n\right\} \text { and } Y=\left\{y_{i}: \mathfrak{i}=1, \ldots, n\right\}
$$

and edges are

$$
E=\left\{\left(x_{i}, y_{i}\right),\left(x_{i}, y_{i+1}\right): i=1, \ldots, n\right\}
$$

All subscripts are taking modulo n. A k-matching on a graph means a set of k edges such that none of them share a same vertex. Show that the number of k-matchings on $C_{2 n}$ is the number of ways to put k rooks on \mathcal{C}_{n} in non-attacking positions.
Solution. Let M be a k-matching on $C_{2 n}$. Then

$$
\left\{(i, j):\left(x_{i}, y_{j}\right) \in M\right\}
$$

is a non-attacking rook placement on \mathcal{C}_{n}. Conversely, if \mathcal{P} is a non-attacking placement on \mathcal{C}_{n}, then

$$
\left\{\left(x_{i}, y_{j}\right):(i, j) \in \mathcal{P}\right\}
$$

forms a k-matching of $C_{2 n}$.
2. Let $\phi(n)$ be the Euler's totient function. That is, $\phi(n)$ is the number of integers k with $\operatorname{gcd}(k, n)=1$ and $1 \leqslant k \leqslant n$. Consider $n=12$ and the set $[n]=\{1, \ldots, 12\}$. Let

$$
A_{d}=\{k \in[n]: \operatorname{gcd}(k, n)=d\}
$$

For each $d \mid n$, find A_{d} and verify $\left|A_{d}\right|=\phi(n / d)$.
Solution. The value of d can be $1,2,3,4,6,12$.

$$
\begin{aligned}
A_{1} & =\{1,5,7,11\} \\
A_{2} & =\{2,10\} \\
A_{3} & =\{3,9\} \\
A_{4} & =\{4,8\} \\
A_{6} & =\{6\} \\
A_{12} & =\{12\}
\end{aligned}
$$

They verify the $\left|\mathcal{A}_{d}\right|=\phi(n / d)$.

$$
\begin{aligned}
\phi(12 / 1) & =\phi(12)=\phi(3) \cdot \phi(4)=2 \cdot 2=4 \\
\phi(12 / 2) & =\phi(6)=\phi(2) \cdot \phi(3)=1 \cdot 2=2 \\
\phi(12 / 3) & =\phi(4)=2 \\
\phi(12 / 4) & =\phi(3)=2 \\
\phi(12 / 6) & =\phi(2)=1 \\
\phi(12 / 12) & =\phi(1)=1
\end{aligned}
$$

