Math555 Homework 4

Note: To submit the k-th homework, simply put your files in the folder HWk on CoCalc, and it will be collected on the due day.

1. Let $S(n, k)$ denote the Stirling number of the second kind that counts the number of partitions of $[n]$ into k parts and let $B(n)$ be the Bell number that counts the number of total partitions of $[n]$, where $B(0)=1$. That is,

$$
B(n)=\sum_{k=0}^{n} S(n, k)
$$

Prove each of the following identities.
(a) $B(n+1)=\sum_{i=0}^{n}\binom{n}{n-i} B(i)=\sum_{i=0}^{n}\binom{n}{i} B(i)$.
(b) $\sum_{n \geqslant 0} B(n) \frac{x^{n}}{n!}=\exp \left(e^{x}-1\right)$.
2. For any positive integer n, let D_{n} denote the number of derangements of [n]. Define $\mathrm{D}_{0}=1$.
(a) Prove that, for $n \geqslant 1, D_{n}$ is the closest integer to $\frac{n!}{e}$.
(b) Prove that, for $n \geqslant 2, D_{n}=(n-1)\left(D_{n-1}+D_{n-2}\right)$.
(c) Prove that, for $n \geqslant 1, D_{n}=n D_{n-1}+(-1)^{n}$.

You may prove (b) algebraically, but it is probably easier to prove it combinatorially. You may prove (c) combinatorially, but it is probably easier to prove it algebraically.

