Math555 Homework 3

Note: You may turn in your homework through paper work (first three weeks only) or through CoCalc. To submit the k-th homework, simply put your files in the folder HWk on CoCalc, and it will be collected on the due day.

1. Suppose $\pi=b_1b_2\cdots b_n$. Recall that the inversion table of π is $a_1a_2\cdots a_n$ such that $0\leqslant a_i\leqslant n-i$ for all i, where

$$\mathfrak{a}_{\mathfrak{b}_{\mathfrak{i}}} = \big| \{ \mathfrak{j} < \mathfrak{i} : \mathfrak{b}_{\mathfrak{j}} > \mathfrak{b}_{\mathfrak{i}} \} \big|.$$

A left-to-right maximum of π is a digit b_j such that $b_j \geqslant b_i$ for all $i \leqslant j$. Finish the following table.

Solution. The table below lists all the 24 permutations in Σ_4 and their inversion tables.

permutations in Σ_4	inversion table	# of left-to-right maxima
1234	0000	4
1243	0010	3
1324	0100	3
1342	0200	3
1423	0110	2
1432	0210	2
2134	1000	3
2143	1010	2
2314	2000	3
2341	3000	3
2413	2010	2
2431	3010	2
3124	1100	2
3142	1200	2
3214	2100	2
3241	3100	2
3412	2200	2
3421	3200	2
4123	1110	1
4132	1210	1
4213	2110	1
4231	3110	1
4312	2210	1
4321	3210	1

2. Given that $s(n,k) = (-1)^{n-k}c(n,k)$ and

$$\sum_{k=0}^{n} c(n,k) x^{k} = (x+n+1)_{n},$$

show that

$$\sum_{k=0}^{n} s(n,k)x^{k} = (x)_{n}.$$

Solution. This follows from direct computation.

$$\begin{split} \sum_{k=0}^{n} s(n,k) x^k &= \sum_{k=0}^{n} (-1)^{n-k} c(n,k) x^k \\ &= (-1)^n \sum_{k=0}^{n} c(n,k) (-x)^k \\ &= (-1)^n (-x+n-1)_n \\ &= (-1)^n (-x+n-1) (-x+n) \cdots (-x) \\ &= (x) (x-1) \cdots (x-n+1) = (x)_n. \end{split}$$

In other words, s(n, k) is the coefficient of x^k in $(x)_n$,