Math555 Homework 3

Note: You may turn in your homework through paper work (first three weeks only) or through CoCalc. To submit the k-th homework, simply put your files in the folder HWk on CoCalc, and it will be collected on the due day.

1. Suppose $\pi=b_{1} b_{2} \cdots b_{n}$. Recall that the inversion table of π is $a_{1} a_{2} \cdots a_{n}$ such that $0 \leqslant a_{i} \leqslant n-i$ for all i, where

$$
a_{b_{i}}=\left|\left\{j<i: b_{j}>b_{i}\right\}\right| .
$$

A left-to-right maximum of π is a digit b_{j} such that $b_{j} \geqslant b_{i}$ for all $i \leqslant j$. Finish the following table.
Solution. The table below lists all the 24 permutations in Σ_{4} and their inversion tables.

permutations in Σ_{4}	inversion table	\# of left-to-right maxima
1234	0000	4
1243	0010	3
1324	0100	3
1342	0200	3
1423	0110	2
1432	0210	2
2134	1000	3
2143	1010	2
2314	2000	3
2341	3000	3
2413	2010	2
2431	3010	2
3124	1100	2
3142	1200	2
3214	2100	2
3241	3100	2
3412	2200	2
3421	3200	2
4123	1110	1
4132	1210	1
4213	2110	1
4231	3110	1
4312	2210	1
4321	3210	1

2. Given that $s(n, k)=(-1)^{n-k} c(n, k)$ and

$$
\sum_{k=0}^{n} c(n, k) x^{k}=(x+n+1)_{n}
$$

show that

$$
\sum_{k=0}^{n} s(n, k) x^{k}=(x)_{n}
$$

Solution. This follows from direct computation.

$$
\begin{aligned}
\sum_{k=0}^{n} s(n, k) x^{k} & =\sum_{k=0}^{n}(-1)^{n-k} c(n, k) x^{k} \\
& =(-1)^{n} \sum_{k=0}^{n} c(n, k)(-x)^{k} \\
& =(-1)^{n}(-x+n-1)_{n} \\
& =(-1)^{n}(-x+n-1)(-x+n) \cdots(-x) \\
& =(x)(x-1) \cdots(x-n+1)=(x)_{n} .
\end{aligned}
$$

In other words, $s(n, k)$ is the coefficient of x^{k} in $(x)_{n}$,

