Math555 Homework 3

Note: You may turn in your homework through paper work (first three weeks only) or through CoCalc. To submit the k-th homework, simply put your files in the folder HWk on CoCalc, and it will be collected on the due day.

1. Suppose $\pi=b_{1} b_{2} \cdots b_{n}$. Recall that the inversion table of π is $a_{1} a_{2} \cdots a_{n}$ such that $0 \leqslant a_{i} \leqslant n-i$ for all i, where

$$
a_{b_{i}}=\left|\left\{j<i: b_{j}>b_{i}\right\}\right| .
$$

A left-to-right maximum of π is a digit b_{j} such that $b_{j} \geqslant b_{i}$ for all $i \leqslant j$. Finish the following table.
Solution. The table below lists all the 24 permutations in Σ_{4} and their inversion tables.

permutations in Σ_{4}	inversion table	\# of left-to-right maxima
1234		4
1243		
1324		
1342		
1423		
1432		
2134		
2143		
2314		
2341	1100	
2413	1200	
2431	2100	
	3100	
	2200	
	3200	
	1110	
	1210	
	2110	
	3110	
	2210	
	3210	

2. Given that $s(n, k)=(-1)^{n-k} c(n, k)$ and

$$
\sum_{k=0}^{n} c(n, k) x^{k}=(x+n+1)_{n},
$$

show that

$$
\sum_{k=0}^{n} s(n, k) x^{k}=(x)_{n}
$$

