Math555 Homework 2

Note: You may turn in your homework through paper work (first three weeks only) or through CoCalc. To submit the k-th homework, simply put your files in the folder HWk on CoCalc, and it will be collected on the due day.

1. Show that

$$
\left(\frac{n}{k}\right)^{k} \leqslant\binom{ n}{k} \leqslant \frac{n^{k}}{k!} \leqslant\left(\frac{e n}{k}\right)^{k}
$$

for any integers n and k with $1 \leqslant k \leqslant n$.
Solution. For the first inequality, since $\frac{n-i}{k-i} \geqslant \frac{n}{k}$ for $\mathfrak{i}<k \leqslant n$,

$$
\binom{n}{k}=\frac{n}{k} \cdot \frac{n-1}{k-1} \cdots \frac{n-k+1}{1} \geqslant\left(\frac{n}{k}\right)^{k} .
$$

For the second inequality,

$$
\binom{n}{k}=\frac{(n)_{k}}{k!} \leqslant \frac{n^{k}}{k!} .
$$

For the third inequality, observe that

$$
e^{k}=\sum_{i=0}^{\infty} \frac{k^{i}}{i!} \geqslant \frac{k^{k}}{k!}
$$

Then substitute the inequality $k!\leqslant \frac{k^{k}}{e^{k}}$ to $\frac{n^{k}}{k!}$ and get the desired inequality. Note that this is a weaker result than the Stirling's formula, so try not to use Stirling's formula to prove it.
2. Show that

$$
n!\leqslant \frac{e \sqrt{n} \cdot n^{n}}{e^{n}}
$$

for any integer $n \geqslant 1$, where e is Euler's number.
Hint: First explain that $\ln (n-1)!+\frac{1}{2} \ln n \leqslant \int_{1}^{n} \ln x d x$. Then remember the fact that $n!=n \cdot(n-1)!$.

Solution. Following the graph above, the total area of the white rectangles and the gray triangles is

$$
\begin{aligned}
& \left.\ln (n-1)!+\frac{1}{2}(\ln 2-\ln 1)+\frac{1}{2}(\ln 3-\ln 2)\right)+\cdots+\frac{1}{2}(\ln n-\ln (n-1)) \\
= & \ln (n-1)!+\frac{1}{2} \ln n .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\ln (n-1)!+\frac{1}{2} \ln n & \leqslant \int_{1}^{n} \ln x d x \\
& =\left.[x \ln x-x]\right|_{1} ^{n} \\
& =[n \ln n-0]-[n-1] \\
& =\ln \frac{e n^{n}}{e^{n}} .
\end{aligned}
$$

This means

$$
(n-1)!\leqslant \frac{e n^{n}}{\sqrt{n} e^{n}}
$$

Multiplying the both sides by n gives the desired result.

