
Math555 Homework 2

Note: You may turn in your homework through paper work (first three weeks only) or
through CoCalc. To submit the k-th homework, simply put your files in the folder HWk

on CoCalc, and it will be collected on the due day.
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For the third inequality, observe that
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Then substitute the inequality k! 6 kk

ek to nk

k!
and get the desired inequality. Note

that this is a weaker result than the Stirling’s formula, so try not to use Stirling’s
formula to prove it.
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2. Show that
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for any integer n > 1, where e is Euler’s number.
Hint: First explain that ln(n− 1)! + 1
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ln xdx. Then remember the fact that

n! = n · (n− 1)!.
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Solution. Following the graph above, the total area of the white rectangles and the
gray triangles is
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Thus, we have
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Multiplying the both sides by n gives the desired result.
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