Math555 Homework 10

Note: To submit the k-th homework, simply put your files in the folder HWk on CoCalc, and it will be collected on the due day.

1. Let $f(x)=(1+x)^{-1}$. There are two ways to compute the formal power series of $f^{\prime}(x)$. Firstly, compute $f^{\prime}(x)$ as a function and then expand

$$
f^{\prime}(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots
$$

Secondly, write

$$
f(x)=a_{0}+a_{1} x+x_{2} x^{2}+\cdots
$$

and then compute the formal derivative term-by-term

$$
f^{\prime}(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots
$$

Show that $b_{k}=c_{k}$ for any $k \geqslant 0$.
Solution. First, treating $f(x)$ as a function and get $f^{\prime}(x)=-(1+x)^{-2}$. By the binomial theorem,

$$
b_{k}=-\binom{-2}{k}
$$

In contrast,

$$
f(x)=1-x+x^{2}-x^{3}+\cdots=\sum_{k \geqslant 0}\binom{-1}{k} x^{k}
$$

Apply the formal derivative and get

$$
f^{\prime}(x)=-1+2 x-3 x^{2}+\cdots=\sum_{k \geqslant 1} k\binom{-1}{k} x^{k-1}=\sum_{k \geqslant 0}(k+1)\binom{-1}{k+1} x^{k} .
$$

Therefore,

$$
\begin{aligned}
c_{k} & =(k+1)\binom{-1}{k+1} \\
& =(k+1) \frac{(-1)(-2) \cdots(-1-k)}{(k+1)!} \\
& =-\frac{(-2) \cdots(-1-k)}{k!}=-\binom{-2}{k} .
\end{aligned}
$$

2. Use Sage to write a function perm_to_inv (per) to compute the inversion table of the permutation perm. Also write a function inv_to_perm(t) to compute the permutation for the inversion table t. See the file SageProject5_blank. sagews in your CoCalc folder.
Solution. The sample solutions are posted on the course website.
