Math555 Final

8 questions, 40 total points
Note: Use other papers to answer the problems. Remember to write down your name and your student ID \#.

1. [5pt] Let N and X be two sets with $|N|=2$ and $|X|=3$. Fill in the following table by the number of functions $f: N \rightarrow X$ with the given conditions.

N	X	Any f	injective f	surjective f
dist	dist	(i)	(ii)	(iii)
indist	dist	(iv)	(v)	(vi)
dist	indist	(vii)	(viii)	(ix)
indist	indist	(x)	(xi)	(xii)

Solution. Use the formulas given in the lecture notes.

N	X	Any f	injective f	surjective f
dist	dist	$3^{2}=9$	$(3)_{2}=6$	0
indist	dist	$\left(\binom{3}{2}\right)=6$	$\binom{3}{2}=3$	0
dist	indist	$\mathrm{S}(2,0)+\mathrm{S}(2,1)+\mathrm{S}(2,2)+\mathrm{S}(2,3)=2$	1	0
indist	indist	$\mathrm{p}_{0}(2)+\mathrm{p}_{1}(2)+\mathrm{p}_{2}(2)+\mathrm{p}_{3}(2)=2$	1	0

2. [5pt] Solve the recurrence relation below.

$$
\left\{\begin{array}{l}
a_{n}+0 a_{n-1}-3 a_{n-2}-2 a_{n-3}=0 \\
a_{0}=4, a_{1}=3, a_{2}=17
\end{array}\right.
$$

Solution. The characteristic polynomial is

$$
p(x)=x^{3}-3 x-2=(x+1)^{2}(x-2)
$$

with the roots $-1,-1,2$. Thus, the formula for a_{n} is

$$
a_{n}=A \cdot(-1)^{n}+B \cdot n(-1)^{n}+C \cdot 2^{n} .
$$

Substituting this equality with $n=0,1,2$, we get the following equations.

$$
\left\{\begin{aligned}
A+C & =4 \\
(-1) A+(-1) B+2 C & =3 \\
A+2 B+4 C & =17
\end{aligned}\right.
$$

It follows that $A=1, B=2$, and $C=3$, so

$$
a_{n}=(-1)^{n}+2 n(-1)^{n}+3 \cdot 2^{n}
$$

3. [5pt] Find the first ten terms of the reciprocal of $f(x)=1-x+x^{2}$.

Solution. Let $g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots$. Suppose $f(x) g(x)=1$. Direct computation gives the following.

$$
\begin{aligned}
& 1=1 b_{0} \Longrightarrow b_{0}=1 \\
& 0=1 b_{1}-1 b_{0} \Longrightarrow b_{1}=1 \\
& 0=1 b_{2}-1 b_{1}+1 b_{0} \Longrightarrow b_{2}=0 \\
& 0=1 b_{3}-1 b_{2}+1 b_{1} \Longrightarrow b_{3}=-1 \\
& 0=1 b_{4}-1 b_{3}+1 b_{2} \Longrightarrow b_{4}=-1 \\
& 0=1 b_{5}-1 b_{4}+1 b_{3} \Longrightarrow b_{5}=0 \\
& 0=1 b_{6}-1 b_{5}+1 b_{4} \Longrightarrow b_{6}=1 \\
& 0=1 b_{7}-1 b_{6}+1 b_{5} \Longrightarrow b_{7}=1 \\
& 0=1 b_{8}-1 b_{7}+1 b_{6} \Longrightarrow b_{8}=0 \\
& 0=1 b_{9}-1 b_{8}+1 b_{7} \Longrightarrow b_{9}=-1
\end{aligned}
$$

Thus,

$$
g(x)=1+x+0 x^{2}-x^{3}-x^{4}+0 x^{5}+x^{6}+x^{7}+0 x^{8}-x^{9}+\cdots
$$

4. [5pt] Let $f(x)=(1+x)^{-1}$. Find a_{k} such that $f^{\prime \prime}(x)=\sum_{k \geqslant 0} a_{k} x^{k}$. Here $f^{\prime \prime}(x)$ is the second (formal) derivative of $f(x)$.
Solution. Compute $f^{\prime \prime}(x)=(-1)(-2)(1+x)^{-3}=2(1+x)^{-3}$. So $a_{k}=2\binom{-3}{k}$.

5. [5pt] Compute

$$
A=\sum_{n \geqslant 0} \frac{n^{2}}{n!}, B=\sum_{n \geqslant 0} \frac{n}{n!} \text {, and } C=\sum_{n \geqslant 0} \frac{1}{n!} .
$$

Then find the value of

$$
\sum_{n \geqslant 0} \frac{2 n^{2}+4 n-3}{n!}
$$

Solution. Let $f_{0}(x)=e^{x}=\sum_{n \geqslant 0} \frac{x^{n}}{n!}$. Then $C=f_{0}(1)=e$. Next, compute

$$
f_{1}(x)=(x D) f_{0}(x)=x e^{x}=\sum_{n \geqslant 0} \frac{n x^{n}}{n!}
$$

Therefore, $B=f_{1}(1)=e$. Again, compute

$$
f_{2}(x)=(x D) f_{1}(x)=e^{x}+x e^{x}=\sum_{n \geqslant 0} \frac{n^{2} x^{n}}{n!} .
$$

Thus, $A=f_{2}(1)=2 e$.
Finally, the desired value is

$$
2 A+4 B-3 C=5 e
$$

6. [5pt] Draw the Hasse diagram for the poset D_{60}.

Solution.

7. [5pt] Prove that the poset D_{30} and the poset D_{105} are isomorphic. That is, find a bijection between the factors of 30 and the factors of 105 that preserve the relation.
Solution. Note that

$$
30=2 \cdot 3 \cdot 5 \text { and } 105=3 \cdot 5 \cdot 7
$$

The factors of 30 are

$$
S=\left\{2^{a} \cdot 3^{b} \cdot 5^{c}: a, b, c \in\{0,1\}\right\}
$$

and the factors of 105 are

$$
T=\left\{3^{a} \cdot 5^{b} \cdot 7^{c}: a, b, c \in\{0,1\}\right\} .
$$

Define the map $f: S \rightarrow T$ by $f\left(2^{a} \cdot 3^{b} \cdot 5^{c}\right)=3^{a} \cdot 5^{b} \cdot 7^{c}$. One may check that f is an isomorphism between D_{30} and D_{105}.
8. [5pt] Consider the poset D_{8}. Find the matrix forms of the zeta function and the Möbius function on D_{8}, using $\{1,2,4,8\}$ as the index of the matrix.
Solution. For the zeta function,

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

For the Möbius function,

$$
\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

