Math555 Final

8 questions, 40 total points

Note: Use other papers to answer the problems. Remember to write down your **name** and your **student ID #**.

1. [5pt] Let N and X be two sets with |N| = 2 and |X| = 3. Fill in the following table by the number of functions $f : N \to X$ with the given conditions.

N	Х	Any f	injective f	surjective f
dist	dist	(i)	(ii)	(iii)
indist	dist	(iv)	(v)	(vi)
dist	indist	(vii)	(viii)	(ix)
indist	indist	(x)	(xi)	(xii)

Solution. Use the formulas given in the lecture notes.

N	X	Any f	injective f	surjective f
dist	dist	$3^2 = 9$	$(3)_2 = 6$	0
indist	dist	$\binom{3}{2} = 6$	$\binom{3}{2} = 3$	0
dist	indist	S(2,0) + S(2,1) + S(2,2) + S(2,3) = 2	1	0
indist	indist	$p_0(2) + p_1(2) + p_2(2) + p_3(2) = 2$	1	0

2. [5pt] Solve the recurrence relation below.

$$\begin{cases} a_n + 0a_{n-1} - 3a_{n-2} - 2a_{n-3} = 0. \\ a_0 = 4, a_1 = 3, a_2 = 17. \end{cases}$$

Solution. The characteristic polynomial is

$$p(x) = x^3 - 3x - 2 = (x+1)^2(x-2)$$

with the roots -1, -1, 2. Thus, the formula for a_n is

$$a_n = A \cdot (-1)^n + B \cdot n(-1)^n + C \cdot 2^n.$$

Substituting this equality with n = 0, 1, 2, we get the following equations.

$$\begin{cases} A + C = 4\\ (-1)A + (-1)B + 2C = 3\\ A + 2B + 4C = 17 \end{cases}$$

It follows that A = 1, B = 2, and C = 3, so

$$a_n = (-1)^n + 2n(-1)^n + 3 \cdot 2^n.$$

3. [5pt] Find the first ten terms of the reciprocal of $f(x) = 1 - x + x^2$. Solution. Let $g(x) = b_0 + b_1 x + b_2 x^2 + \cdots$. Suppose f(x)g(x) = 1. Direct computation gives the following.

$$1 = 1b_{0} \implies b_{0} = 1$$

$$0 = 1b_{1} - 1b_{0} \implies b_{1} = 1$$

$$0 = 1b_{2} - 1b_{1} + 1b_{0} \implies b_{2} = 0$$

$$0 = 1b_{3} - 1b_{2} + 1b_{1} \implies b_{3} = -1$$

$$0 = 1b_{4} - 1b_{3} + 1b_{2} \implies b_{4} = -1$$

$$0 = 1b_{5} - 1b_{4} + 1b_{3} \implies b_{5} = 0$$

$$0 = 1b_{6} - 1b_{5} + 1b_{4} \implies b_{6} = 1$$

$$0 = 1b_{7} - 1b_{6} + 1b_{5} \implies b_{7} = 1$$

$$0 = 1b_{8} - 1b_{7} + 1b_{6} \implies b_{8} = 0$$

$$0 = 1b_{9} - 1b_{8} + 1b_{7} \implies b_{9} = -1$$

Thus,

$$g(x) = 1 + x + 0x^2 - x^3 - x^4 + 0x^5 + x^6 + x^7 + 0x^8 - x^9 + \cdots$$

4. [5pt] Let $f(x) = (1 + x)^{-1}$. Find a_k such that $f''(x) = \sum_{k \ge 0} a_k x^k$. Here f''(x) is the second (formal) derivative of f(x). Solution. Compute $f''(x) = (-1)(-2)(1 + x)^{-3} = 2(1 + x)^{-3}$. So $a_k = 2\binom{-3}{k}$. 5. [5pt] Compute

$$A = \sum_{n \ge 0} \frac{n^2}{n!}, B = \sum_{n \ge 0} \frac{n}{n!}, \text{ and } C = \sum_{n \ge 0} \frac{1}{n!}.$$

Then find the value of

$$\sum_{n \ge 0} \frac{2n^2 + 4n - 3}{n!}$$

Solution. Let $f_0(x) = e^x = \sum_{n \ge 0} \frac{x^n}{n!}$. Then $C = f_0(1) = e$. Next, compute

$$f_1(x) = (xD)f_0(x) = xe^x = \sum_{n \ge 0} \frac{nx^n}{n!}$$

Therefore, $B = f_1(1) = e$. Again, compute

$$f_2(x) = (xD)f_1(x) = e^x + xe^x = \sum_{n \ge 0} \frac{n^2 x^n}{n!}.$$

Thus, $A = f_2(1) = 2e$. Finally, the desired value is

$$2A + 4B - 3C = 5e.$$

[5pt] Draw the Hasse diagram for the poset D₆₀.
 Solution.

7. [5pt] Prove that the poset D_{30} and the poset D_{105} are isomorphic. That is, find a bijection between the factors of 30 and the factors of 105 that preserve the relation. **Solution.** Note that

 $30 = 2 \cdot 3 \cdot 5$ and $105 = 3 \cdot 5 \cdot 7$.

The factors of 30 are

$$S = \{2^{a} \cdot 3^{b} \cdot 5^{c} : a, b, c \in \{0, 1\}\}$$

and the factors of 105 are

$$T = \{3^{a} \cdot 5^{b} \cdot 7^{c} : a, b, c \in \{0, 1\}\}.$$

Define the map $f: S \to T$ by $f(2^a \cdot 3^b \cdot 5^c) = 3^a \cdot 5^b \cdot 7^c$. One may check that f is an isomorphism between D_{30} and D_{105} .

8. [5pt] Consider the poset D₈. Find the matrix forms of the zeta function and the Möbius function on D₈, using {1, 2, 4, 8} as the index of the matrix.
Solution. For the zeta function,

unction,
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

For the Möbius function,

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$