Math555 Final

8 questions, 40 total points
Note: Use other papers to answer the problems. Remember to write down your name and your student ID \#.

1. [5pt] Let N and X be two sets with $|N|=2$ and $|X|=3$. Fill in the following table by the number of functions $f: N \rightarrow X$ with the given conditions.

N	X	Any f	injective f	surjective f
dist	dist	(i)	(ii)	(iii)
indist	dist	(iv)	(v)	(vi)
dist	indist	(vii)	(viii)	(ix)
indist	indist	(x)	(xi)	(xii)

2. [5pt] Solve the recurrence relation below.

$$
\left\{\begin{array}{l}
a_{n}+0 a_{n-1}-3 a_{n-2}-2 a_{n-3}=0 \\
a_{0}=4, a_{1}=3, a_{2}=17
\end{array}\right.
$$

3. [5pt] Find the first ten terms of the reciprocal of $f(x)=1-x+x^{2}$.
4. [5pt] Let $f(x)=(1+x)^{-1}$. Find a_{k} such that $f^{\prime \prime}(x)=\sum_{k \geqslant 0} a_{k} x^{k}$. Here $f^{\prime \prime}(x)$ is the second (formal) derivative of $f(x)$.
5. [5pt] Compute

$$
A=\sum_{n \geqslant 0} \frac{n^{2}}{n!}, B=\sum_{n \geqslant 0} \frac{n}{n!} \text {, and } C=\sum_{n \geqslant 0} \frac{1}{n!} .
$$

Then find the value of

$$
\sum_{n \geqslant 0} \frac{2 n^{2}+4 n-3}{n!}
$$

6. [5pt] Draw the Hasse diagram for the poset D_{60}.
7. [5pt] Prove that the poset D_{30} and the poset D_{105} are isomorphic. That is, find a bijection between the factors of 30 and the factors of 105 that preserve the relation.
8. [5pt] Consider the poset D_{8}. Find the matrix forms of the zeta function and the Möbius function on D_{8}, using $\{1,2,4,8\}$ as the index of the matrix.
