Sample Questions 9

1. Let $\mathbf{u}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Find \mathbf{x} and \mathbf{y} such that $\mathbf{u}=\mathbf{x}+\mathbf{y}$ with $\mathbf{x} \in \operatorname{span}\{\mathbf{v}\}$ and $\langle\mathbf{v}, \mathbf{y}\rangle=0$.
2. Suppose \mathbf{A} is an $m \times n$ matrix and \mathbf{B} is an $n \times \ell$ matrix. Show that $(\mathbf{A B})^{\top}=$ $\mathbf{B}^{\top} \mathbf{A}^{\top}$. That is, show that the i, j-entry of $(\mathbf{A B})^{\top}$ and the \mathfrak{i}, j-entry of $\mathbf{B}^{\top} \mathbf{A}^{\top}$ are the same for $i=1, \ldots, m$ and $j=$ $1, \ldots, \ell$.
3. Let

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right], \mathbf{x}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right], \text { and } \mathbf{y}=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

Compute $\langle\mathbf{A x}, \mathbf{y}\rangle$ and $\left\langle\mathbf{x}, \mathbf{A}^{\top} \mathbf{y}\right\rangle$ separately and check if they are the same.
4. Show that $\mathbf{A x}=\mathbf{0}$ if and only if $\mathbf{A}^{\top} \mathbf{A x}=\mathbf{0}$. [One direction is easy while the other is tricky. Hint: Suppose $\mathbf{A}^{\top} \mathbf{A x}=\mathbf{0}$. then $\left\langle\mathbf{x}, \mathbf{A}^{\top} \mathbf{A x}\right\rangle=0$ and you can move \mathbf{A}^{\top} to the other side.]
5. Show that \mathbf{A} has full column rank if and only if $\mathbf{A}^{\top} \mathbf{A}$ is invertible.
6. Let

$$
\mathbf{x}=\left[\begin{array}{c}
3+2 i \\
2-3 i \\
\mathfrak{i}
\end{array}\right] \text { and } \mathbf{y}=\left[\begin{array}{c}
3+4 i \\
-4 i \\
2-\mathfrak{i}
\end{array}\right] \in \mathbb{C}^{3}
$$

Find $\langle\mathbf{x}, \mathbf{y}\rangle,\langle\mathbf{y}, \mathbf{x}\rangle$, and $|\mathbf{x}|$ (where the inner product is over \mathbb{C}).
7. A Vandermonde matrix is of the form

$$
\mathbf{M}\left(p_{1}, \ldots, p_{n}\right)=\left[\begin{array}{cccc}
1 & p_{1} & \cdots & p_{1}^{n-1} \\
1 & p_{2} & \cdots & p_{2}^{n-1} \\
\vdots & \vdots & & \vdots \\
1 & p_{n} & \cdots & p_{n}^{n-1}
\end{array}\right]
$$

Suppose a polynomial $f(x)=a+b x+$ $c x^{2}+d x^{3}+e x^{4}$ passes through the five points $\left(p_{1}, q_{1}\right), \ldots,\left(p_{5}, q_{5}\right)$. Show that

$$
\mathbf{M}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right)\left[\begin{array}{l}
a \\
b \\
c \\
d \\
e
\end{array}\right]=\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q_{4} \\
q_{5}
\end{array}\right] .
$$

[Therefore, you can use five points to determine a degree-four polynomial.]

