Sample Questions 7

1. For each of the following vector spaces, find a basis and the dimension.
(a) the space of all 2×2 matrices
(b) the space of all polynomials of degree at most 3
(c) $\left\{\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ 0 & \mathrm{c}\end{array}\right]: \mathrm{c}-2 \mathrm{~b}=0\right\}$
(d) $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 0 \\ -2\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$
(e) $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}5 \\ 3 \\ 8\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 6\end{array}\right]\right\}$
(f) the solution set of

$$
\left\{\begin{array}{r}
x_{1}-4 x_{2}+3 x_{3}-x_{4}=0 \\
2 x_{1}-8 x_{2}+6 x_{3}-2 x_{4}=0
\end{array}\right.
$$

2. Suppose $\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\rangle$ is a basis for a vector space. Show that $\left\langle\mathrm{c}_{1} \mathbf{x}_{1}, \mathrm{c}_{3} \mathbf{x}_{2}, \mathrm{c}_{3} \mathbf{x}_{3}\right\rangle$ is a basis when $c_{1}, c_{2}, c_{3} \neq 0$. Also, show that $\left\langle\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}\right\rangle$ is a basis where $\mathbf{y}_{i}=\mathbf{x}_{1}+\mathbf{x}_{\mathrm{i}}$ for $\mathfrak{i}=1,2,3$.
3. A square matrix is symmetric if its i, j entry equals its \mathfrak{j}, i-entry for every pair i, j. Find a basis for the space of all symmetric 3×3 matrices.
4. Let $\mathrm{B}=\left\langle\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 2\end{array}\right]\right\rangle$ be a basis in \mathbb{R}^{2}.

Treating the vectors in B as the x-axis and the y-axis, respectively, sketch the coordinate systems (the grid lines) corresponding to B. Then find $\operatorname{Rep}_{B}\left(\left[\begin{array}{l}2 \\ 4\end{array}\right]\right)$ and $\operatorname{Rep}_{\mathrm{B}}\left(\left[\begin{array}{c}-4 \\ 1\end{array}\right]\right)$.
5. Find a vector \mathbf{v} such that B is a basis of V.
(a) $\mathrm{B}=\left\langle\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathbf{v}\right\rangle, \mathrm{V}=\mathbb{R}^{2}$
(b) $\mathrm{B}=\left\langle\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], \mathbf{v}\right\rangle, \mathrm{V}=\mathbb{R}^{3}$
(c) $B=\left\langle x, 1+x^{2}, \mathbf{v}\right\rangle, V$ is the space of all polynomials of degree at most 2
6. Given a homogeneous system $\mathbf{A x}=\mathbf{0}$, the algorithm for finding the general solution (Page 11, lecture notes 2) outputs k vectors $S=\left\langle\beta_{1}, \ldots, \beta_{k}\right\rangle$ such that $\operatorname{span}(S)$ is the solution set and k is the number of free variables. Show that S is a linearly independent set, so that S is a basis for the solution set. [Hint: If x_{i} is a free variable, what is the value of x_{i} on each of the vectors in S ?]

