Sample Questions 6

1. Determine whether S is linearly independent or not.

(a)
$$S = \left\{ \begin{bmatrix} 1\\-3\\5 \end{bmatrix}, \begin{bmatrix} 2\\2\\4 \end{bmatrix}, \begin{bmatrix} 4\\-4\\14 \end{bmatrix} \right\}$$

(b) $S = \left\{ \begin{bmatrix} 1\\7\\7 \end{bmatrix}, \begin{bmatrix} 2\\7\\7 \end{bmatrix}, \begin{bmatrix} 3\\7\\7 \end{bmatrix} \right\}$
(c) $S = \left\{ \begin{bmatrix} 0\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\4 \end{bmatrix} \right\}$

2. Consider the vector space of all functions on \mathbb{R} . Determine whether S is linearly independent or not.

(a)
$$S = \{\cos(x), \sin(x)\}$$

(b)
$$S = \{1, sin(x), sin(2x)\}$$

(c)
$$S = \{1, \cos^2(x), \sin^2(x)\}$$

- (d) $S = \{\cos(2x), \cos^2(x), \sin^2(x)\}$
- 3. Show that any n+1 vectors in \mathbb{R}^n form a linearly dependent set.

- 4. Suppose S is a linearly independent set. Show that $S \cup \{v\}$ is linearly independent if and only if $v \notin \text{span}(S)$.
- 5. Show that any superset of a linearly dependent set is linearly dependent. Also show that any subset of a linearly independent set is linearly independent.
- 6. Recall that two vectors \mathbf{v} and \mathbf{u} are orthogonal if $\mathbf{v} \cdot \mathbf{u} = 0$. Suppose $S = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ is a set of nonzero vectors such that $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ for any i and j. Show that S is linearly independent.
- 7. Let $\mathbf{A} = [a_{i,j}]$ be an $n \times n$ matrix such that $a_{i,i} \neq 0$ for all i = 1, ..., n and $a_{i,j} = 0$ for all i > j. That is, A is an upper triangular matrix with all diagonal entries nonzero. Show that the columns of A form a linearly independent set. Similarly, show that the rows of A form a linearly independent set.