Sample Questions 5

1. Let $\mathcal{M}_{2 \times 2}$ be the vector space of all 2×2 matrices. Determine whether S is a subspace in $\mathcal{M}_{2 \times 2}$ or not. If yes, write S as the span of some finite set of vectors.
(a) $S=\left\{\left[\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right]: a, b \in \mathbb{R}\right\}$
(b) $S=\left\{\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]: a+b=5\right\}$
(c) $S=\left\{\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]: a+b=0 \in \mathbb{R}\right\}$
2. Determine whether $\mathbf{v} \in \operatorname{span}(S)$.
(a) $\mathbf{v}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right], S=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
(b) $\mathbf{v}=x-x^{3}, S=\left\{x^{2}, 2 x+x^{2}, x+x^{3}\right\}$
(c) $\mathbf{v}=\left[\begin{array}{ll}0 & 1 \\ 4 & 2\end{array}\right], S=\left\{\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}2 & 0 \\ 2 & 3\end{array}\right]\right\}$
3. Determine whether $\operatorname{span}(S)=\mathbb{R}^{3}$.
(a) $\mathrm{S}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right]\right\}$
(b) $S=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]\right\}$
(c) $S=\left\{\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
4. Let \mathcal{F} be the set of all functions f : $\mathbb{R} \rightarrow \mathbb{R}$. A function $f \in \mathcal{F}$ is even if $f(-x)=f(x)$ for all $x \in \mathbb{R}$, and is odd
if $f(-x)=-f(x)$ for all $x \in \mathbb{R}$. Show that the set of all even functions is a subspace in \mathcal{F}, and the set of all odd functions is also a subspace in \mathcal{F}.
5. Every homogeneous linear equation can be written as

$$
\left[\begin{array}{ccc}
- & \mathbf{v}_{1} & - \\
- & \vdots & - \\
- & \mathbf{v}_{m} & -
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right] .
$$

Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathfrak{m}}\right\}$. Then the solutions are

$$
\left\{\mathbf{c} \in \mathbb{R}^{n}: \mathbf{c} \cdot \mathbf{v}=0 \text { for all } \mathbf{v} \in S\right\} .
$$

Show that this set is the same as
$\left\{\mathbf{c} \in \mathbb{R}^{n}: \mathbf{c} \cdot \mathbf{v}=0\right.$ for all $\left.\mathbf{v} \in \operatorname{span}(S)\right\}$.
[Actually, if S^{\prime} is obtained from S by row operations, then $\operatorname{span}(S)=$ $\operatorname{span}\left(S^{\prime}\right)$.]
6. Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathrm{n}}\right\}$,

$$
\mathbf{A}=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n} \\
\mid & \mid & \mid
\end{array}\right] \text {, and } \mathbf{c}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] .
$$

For a given vector $\mathbf{b} \in \mathbb{R}^{m}$, show that $\mathbf{A c}=\mathbf{b}$ has a solution if and only if $\mathbf{b} \in \operatorname{span}(S)$.
7. Let S, A, and \mathbf{c} be the same as that in Question 6. Show that S is linearly independent if and only if $\mathbf{A c}=\mathbf{0}$ has a unique solution (the trivial solution).

