Sample Questions 2

1. Let $\mathbf{0}=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right]$ be a zero vector in \mathbb{R}^{n}. Consider it as an $n \times 1$ matrix. Show that applying any row operation on $\mathbf{0}$ will lead to $\mathbf{0}$. [Therefore, if ($\mathbf{A} \mid \mathbf{b}$) becomes ($\mathbf{R} \mid \mathbf{r}$) after some row operations, then ($\mathbf{A} \mid \mathbf{0}$) will be ($\mathbf{R} \mid \mathbf{0}$) after the same row operations.]
2. Find the general solution of the following linear system.

$$
\left\{\begin{aligned}
3 x+6 y & =18 \\
x+2 y & =6
\end{aligned}\right.
$$

3. Find the general solution of the following linear system.

$$
\left\{\begin{array}{r}
x+2 y-z=3 \\
w+2 x+y=4 \\
w+x-y+z=1
\end{array}\right.
$$

4. Find the general solution of the following linear system.

$$
\left\{\begin{aligned}
u+w+x+y+z & =1 \\
2 u+2 w+2 x+2 y+2 z & =2
\end{aligned}\right.
$$

6. Let

$$
\mathbf{v}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \text { and } X=\left\{\left[\begin{array}{l}
1 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
5
\end{array}\right]\right\}
$$

5. For each of the following matrices, is it singular or nonsingular? Give your reason.
(a) $\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$
(b) $\left[\begin{array}{cccc}0 & 1 & 2 & 3 \\ 4 & 5 & 6 & 7 \\ 8 & 9 & 10 & 11 \\ 12 & 13 & 14 & 15\end{array}\right]$

Can \mathbf{v} be written as a linear combination of vectors in X ?
7. Let

$$
\mathbf{v}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right] \text { and } X=\left\{\left[\begin{array}{l}
2 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
0 \\
2
\end{array}\right]\right\}
$$

Can \mathbf{v} be written as a linear combination of vectors in X ?

