1. Let
$$\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 be a zero vector in \mathbb{R}^n .

Consider it as an $n \times 1$ matrix. Show that applying any row operation on **0** will lead to **0**. [Therefore, if (**A**|**b**) becomes (**R**|**r**) after some row operations, then (**A**|**0**) will be (**R**|**0**) after the same row operations.]

2. Find the general solution of the following linear system.

$$\begin{cases} 3x + 6y = 18\\ x + 2y = 6 \end{cases}$$

3. Find the general solution of the following linear system.

$$\begin{cases} x + 2y - z = 3\\ w + 2x + y = 4\\ w + x - y + z = 1 \end{cases}$$

4. Find the general solution of the following linear system.

$$\begin{cases} u + w + x + y + z = 1\\ 2u + 2w + 2x + 2y + 2z = 2 \end{cases}$$

5. For each of the following matrices, is it singular or nonsingular? Give your reason.

(a)	[0 1 1 1	1 0 1 1	1 1 0 1	1 1 1 0	
(b)	0 4 8 12	1	1 5 9 3	2 6 10 14	3 7 11 15

6. Let

$$\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \text{ and } X = \left\{ \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 5 \end{bmatrix} \right\}.$$

Can **v** be written as a linear combination of vectors in X?

7. Let

$$\mathbf{v} = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix} \text{ and } X = \left\{ \begin{bmatrix} 2\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 3\\0\\0\\2 \end{bmatrix} \right\}.$$

Can **v** be written as a linear combination of vectors in X?