Sample Questions 14

1. Let $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{W}$ be a homomorphism. Show that f is one-to-one if and only if nullspace $(f)=\{0\}$. (Equivalently, the nullity is zero.)

For the following questions, \mathbf{A} is an $\mathrm{m} \times \mathrm{n}$ matrix and

$$
\begin{aligned}
\mathrm{f}: \mathbb{R}^{\mathrm{n}} & \rightarrow \mathbb{R}^{\mathrm{m}} \\
\mathbf{x} & \mapsto \mathbf{A x}
\end{aligned}
$$

is a function defined by \mathbf{A}. Let $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ be the standard basis of \mathbb{R}^{n} and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be the column vectors of \mathbf{A}. Note that $f\left(\mathbf{e}_{k}\right)=\mathbf{v}_{k}$ for each k.
2. Show that f is a homomorphism. Write the domain, the codomain, the range, and the null space of f in set notation. (Therefore, the range of f is the column space of A.)

Find a basis for range(f) and a basis of nullspace(f). Double-check your answer by the dimension theorem:

$$
\operatorname{rank}+\text { nullity }=\operatorname{dim} \mathbb{R}^{n}=4
$$

4. Suppose $n=2$ and

$$
f\left(\mathbf{e}_{1}\right)=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right] \text { and } f\left(\mathbf{e}_{2}\right)=\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]
$$

Find A.
5. Derive the formula of the rotation matrix by Problem 4. That is, find $f\left(\mathbf{e}_{1}\right)$ and $f\left(\mathbf{e}_{2}\right)$ when f is the rotation by angle θ counterclockwisely; then find A.
6. Show that f is one-to-one if and only if A has full column rank. [You may use Problem 1.]
3. Let

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -1 & 1 & -1 \\
2 & -2 & 1 & 1 \\
3 & -3 & 2 & 0
\end{array}\right]
$$

7. Show that f is onto if and only if A has full row rank.
