Sample Questions 13

For the following problems, \mathcal{P}_{d} is the space of all polynomials with real coefficients and of degree at most d.

1. For each function f in Problem 4 of SampleQuestion12, check if f is linear. That is, check if f is a homomorphism or not.
2. Suppose $f: \mathbb{R}^{2} \rightarrow P_{2}$ is a homomorphism with $\mathrm{f}\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)=1+x+x^{2}$ and $f\left(\left[\begin{array}{l}3 \\ 1\end{array}\right]\right)=-2+3 x+x^{2}$. Find $f\left(\left[\begin{array}{l}9 \\ 8\end{array}\right]\right)$.
3. Suppose $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a linearly independent set in V and $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{W}$ is a homomorphism that is one-to-one. Show that $f(B)$ is a linearly independent set in W.
4. Suppose $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a spanning set in V and $f: V \rightarrow W$ is a homo-
morphism that is onto. Show that $f(B)$ is a spanning set in W. That is, if $\operatorname{span}(B)=V$ then $\operatorname{span}(f(B))=W$.
5. Let $\mathrm{T}: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ be the derivative operation with $T\left(x^{k}\right)=k x^{k-1}$. Find the range space range(T) and the null space nullspace (T). Compute the rank and the nullity of T .

The following two problems are in the lecture notes. You may write it again in your own words and make sure you understand the logic of every steps.
6. Let $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{W}$ be a homomorphism. Show that $f(X)$ is a subspace of W if X is a subspace of V.
7. Let $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{W}$ be a homomorphism. Show that $f^{-1}(Y)$ is a subspace of V if Y is a subspace of V .

