Sample Questions 12

- 1. Let $\mathcal{B} = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be an orthogonal basis. Suppose $\alpha \cup \beta = \mathcal{B}$ and $\alpha \cap \beta = \emptyset$. Show that span(β) is the orthogonal complement of span(α).
- 2. Let $\mathcal{B} = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be an orthogonal basis and $\alpha \subseteq \mathcal{B}$. Suppose

$$\mathbf{y} = \mathbf{c}_1 \mathbf{v}_1 + \cdots + \mathbf{c}_n \mathbf{v}_n.$$

Show that the projection of **y** onto the space $span(\alpha)$ is

$$\sum_{\mathbf{v}_k\in\alpha}c_k\mathbf{v}_k.$$

3. Let $\mathcal{B} = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be an orthonormal basis. Suppose

$$\mathbf{y} = \mathbf{c}_1 \mathbf{v}_1 + \cdots + \mathbf{c}_n \mathbf{v}_n.$$

Show that $c_k = \langle \mathbf{y}, \mathbf{v}_k \rangle = \mathbf{v}_k^\top \mathbf{y}$ for each k. Moreover, let **A** be the matrix whose columns are vectors in \mathcal{B} . Then $\mathbf{A}^\top \mathbf{y} = \operatorname{Rep}_{\mathcal{B}}(\mathbf{y})$. [You see that orthonormal bases are so nice!]

For the following questions, $\mathfrak{M}_{m \times n}$ is the space of all $m \times n$ real matrices, and S_n is the space of all $n \times n$ real symmetric matrices.

4. Determine whether f is an isomorphism.

(a)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 by $\begin{bmatrix} a \\ b \\ c \end{bmatrix} \mapsto \begin{bmatrix} a \\ a \\ a \end{bmatrix}$

(b)
$$f: \mathcal{M}_{2 \times 2} \to \mathbb{R}^4$$
 by

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} a+b+c+d \\ a+b+c \\ a+b \\ a \end{bmatrix}$$
(c) $f: \mathbb{R} \to \mathbb{R}$ by $x \mapsto x^3$

5. Let V be the plane in \mathbb{R}^3 defined by the equation x+y+z = 0. It is known that V can also be written as

$$\left\{ a \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} : a, b \in \mathbb{R} \right\}.$$

Find an isomorphism from V to \mathbb{R}^2 . [Hint: The Rep function.]

- 6. Find a such that $\mathfrak{M}_{m \times n} \equiv \mathbb{R}^{a}$ and find b such that $\mathfrak{S}_{n} = \mathbb{R}^{b}$.
- 7. Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be a basis of \mathbb{R}^n . If a vector **y** has the representation

$$\operatorname{Rep}_{\mathcal{B}}(\mathbf{y}) = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}.$$

How do you recover **y** from $\text{Rep}_{\mathcal{B}}(\mathbf{y})$? Indeed, find a matrix **A** such that

$$\mathbf{y} = \mathbf{A} \operatorname{Rep}_{\mathcal{B}}(\mathbf{y}).$$

Conversely, how do you find $\operatorname{Rep}_{\mathcal{B}}(\mathbf{y})$ from **y**? Find a matrix **B** such that

$$\operatorname{Rep}_{\mathcal{B}}(\mathbf{y}) = \mathsf{B}\mathbf{y}.$$