Sample Questions 12

1. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathrm{n}}\right\}$ be an orthogonal basis. Suppose $\alpha \cup \beta=\mathcal{B}$ and $\alpha \cap \beta=\emptyset$. Show that $\operatorname{span}(\beta)$ is the orthogonal complement of $\operatorname{span}(\alpha)$.
2. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathrm{n}}\right\}$ be an orthogonal basis and $\alpha \subseteq \mathcal{B}$. Suppose

$$
\mathbf{y}=\mathrm{c}_{1} \mathbf{v}_{1}+\cdots+\mathbf{c}_{\mathrm{n}} \mathbf{v}_{\mathrm{n}}
$$

Show that the projection of \mathbf{y} onto the space $\operatorname{span}(\alpha)$ is

$$
\sum_{\mathbf{v}_{k} \in \alpha} c_{k} \mathbf{v}_{k}
$$

3. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be an orthonormal basis. Suppose

$$
\mathbf{y}=\mathrm{c}_{1} \mathbf{v}_{1}+\cdots+\mathrm{c}_{\mathrm{n}} \mathbf{v}_{\mathrm{n}} .
$$

Show that $c_{k}=\left\langle\mathbf{y}, \mathbf{v}_{k}\right\rangle=\mathbf{v}_{\mathrm{k}}^{\top} \mathbf{y}$ for each k. Moreover, let \mathbf{A} be the matrix whose columns are vectors in \mathcal{B}. Then $\mathbf{A}^{\top} \mathbf{y}=\operatorname{Rep}_{\mathcal{B}}(\mathbf{y})$. [You see that orthonormal bases are so nice!]

For the following questions, $\mathcal{M}_{m \times n}$ is the space of all $m \times n$ real matrices, and \mathcal{S}_{n} is the space of all $n \times n$ real symmetric matrices.
4. Determine whether f is an isomorphism.
(a) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{l}a \\ a \\ a\end{array}\right]$
(b) f: $\mathcal{M}_{2 \times 2} \rightarrow \mathbb{R}^{4}$ by

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \mapsto\left[\begin{array}{c}
a+b+c+d \\
a+b+c \\
a+b \\
a
\end{array}\right]
$$

(c) $f: \mathbb{R} \rightarrow \mathbb{R}$ by $x \mapsto x^{3}$
5. Let V be the plane in \mathbb{R}^{3} defined by the equation $x+y+z=0$. It is known that V can also be written as

$$
\left\{a\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+b\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]: a, b \in \mathbb{R}\right\}
$$

Find an isomorphism from V to \mathbb{R}^{2}. [Hint: The Rep function.]
6. Find a such that $\mathcal{M}_{m \times n} \equiv \mathbb{R}^{a}$ and find b such that $\mathcal{S}_{n}=\mathbb{R}^{b}$.
7. Let $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of \mathbb{R}^{n}. If a vector \mathbf{y} has the representation

$$
\operatorname{Rep}_{\mathcal{B}}(\mathbf{y})=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

How do you recover \mathbf{y} from $\operatorname{Rep}_{\mathcal{B}}(\mathbf{y})$? Indeed, find a matrix \mathbf{A} such that

$$
\mathbf{y}=\mathbf{A} \operatorname{Rep}_{\mathcal{B}}(\mathbf{y})
$$

Conversely, how do you find $\operatorname{Rep}_{\mathcal{B}}(\mathbf{y})$ from \mathbf{y} ? Find a matrix \mathbf{B} such that

$$
\operatorname{Rep}_{\mathcal{B}}(\mathbf{y})=\mathrm{By} .
$$

