## Sample Questions 11

1. Let

$$
\mathrm{V}=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
2 \\
-2 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
3 \\
-3 \\
2 \\
0
\end{array}\right]\right\} .
$$

Find a basis of V and a basis of $\mathrm{V}^{\perp}$.
2. Let

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 1 \\
4 & 1 \\
5 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
5 \\
1 \\
-1 \\
1 \\
5
\end{array}\right]
$$

Then $\mathbf{A x}=\mathbf{b}$ is inconsistent. Find $\mathbf{x}_{0}$ and $\mathbf{b}_{0}$ such that $\mathbf{A} \mathbf{x}_{0}=\mathbf{b}_{0}$ with $\left|\mathbf{b}-\mathbf{b}_{0}\right|$ minimized.
3. Let $\mathbf{A}$ be as in Problem 2 and $\mathbf{B}=\mathbf{A}^{\top}$. Let $\mathbf{b}=\left[\begin{array}{l}3 \\ 0\end{array}\right] . \quad$ Then $\mathbf{B x}=\mathbf{b}$ has infinitely many solutions. Find a solution $\mathbf{x}_{0}$ such that $\mathbf{B} \mathbf{x}_{0}=\mathbf{b}$ with $|\mathbf{x}|$ minimized.
4. Consider the following data:

$$
\begin{array}{c|c|c|c|c|c}
x & 1 & 2 & 3 & 4 & 5 \\
\hline y & 5 & 1 & -1 & 1 & 5
\end{array}
$$

Find a line $f(x)=a x+b$ such that the error

$$
\sum_{i=1}^{N}\left(f\left(x_{i}\right)-y_{i}\right)^{2}
$$

is minimized.
5. You may notice that the data in the previous question is not liklely the shape of a line; it is more like a parabola. Find a parabola $f(x)=a x^{2}+$ $b x+c$ such that the error

$$
\sum_{i=1}^{N}\left(f\left(x_{i}\right)-y_{i}\right)^{2}
$$

is minimized.
6. Let

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{N}
\end{array}\right] \text { and } \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right]
$$

The covariance between $\mathbf{x}$ and $\mathbf{y}$ is defined as
$\frac{1}{N} \sum_{i=1}^{N} x_{i} y_{i}-\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}\right)\left(\frac{1}{N} \sum_{i=1}^{N} y_{i}\right)$.
Let $\mathbf{1}_{N} \in \mathbb{R}^{N}$ be the all-ones vector. Use $\mathbf{1}, \circ, \mathbf{x}$ and $\mathbf{y}$ to rewrite the covariance formula.
7. This question gives some intuition to the perceptron learning algorithm. Suppose $\theta^{(k)}$ is not a linear classifier because you found a data $\mathbf{x}_{i}$ with $\theta^{(k)} \cdot \mathbf{x}_{i}<0$ but $y_{i}=1$. Show that for some integer $t$ large enough, the vector $\theta^{(k+t)}:=\theta^{(k)}+t x_{i}$ will have $\theta^{(k+t)} \cdot \mathbf{x}_{i}>0$. What is the minimum $t$ to achieve this?

