線性代數（一）
第一次期中考

姓名 Name： \qquad
學號 Student ID \＃： \qquad

Lecturer：Jephian Lin 林晉宏
Contents：cover page， 6 pages of questions， score page at the end
To be answered：on the test paper
Duration： 110 minutes
Total points： $\mathbf{3 0}$ points +2 extra points

SAMPLE

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．

1. [1pt] Suppose $S=\left\{\overrightarrow{\boldsymbol{z}_{\mathbf{1}}}, \overrightarrow{\boldsymbol{z}_{\mathbf{2}}}, \ldots, \overrightarrow{\boldsymbol{z}_{n}}\right\}$ is a set of n vectors over \mathbb{R}. Write down the definition of that " $\overrightarrow{\boldsymbol{v}}$ is a linear combination of vectors in S."
2. [1pt] Suppose $\overrightarrow{\boldsymbol{p}}=\left(p_{1}, \ldots, p_{n}\right)$ and $\overrightarrow{\boldsymbol{q}}=\left(q_{1}, \ldots, q_{n}\right)$ are two vectors in \mathbb{R}^{n}. Write down the definition of the inner product of $\overrightarrow{\boldsymbol{p}}$ and $\overrightarrow{\boldsymbol{q}}$.
3. [2pt] Give a linear system in echelon form with two free variables, and indicate the free variables.
4. [2pt] Give two 3×3 matrices such that one is singular while the other is nonsingular.
5. Let

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{u}}=(0,1,-1,-1,-1) \text { and } \\
& \overrightarrow{\boldsymbol{v}}=\left(\sqrt{3}, \frac{2+3 \sqrt{3}}{2}, \frac{-2+\sqrt{3}}{2}, \frac{-2+\sqrt{3}}{2}, \frac{-2+\sqrt{3}}{2}\right)
\end{aligned}
$$

(a) $[1 \mathrm{pt}]$ Find the length $\|\overrightarrow{\boldsymbol{u}}\|$.
(b) $[1 \mathrm{pt}]$ Find the length $\|\overrightarrow{\boldsymbol{v}}\|$.
(c) $[2 \mathrm{pt}]$ Find the angle between $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$.
6. [2pt] Let $\overrightarrow{\boldsymbol{p}}=(1,2,3,4,5)$. Find a vector $\boldsymbol{\boldsymbol { q }}$ that is parallel to $\overrightarrow{\boldsymbol{p}}$ and a vector $\overrightarrow{\boldsymbol{r}}$ that is orthogonal to $\overrightarrow{\boldsymbol{p}}$. [Note: "parallel" means the angle is 0 or π; "orthognal" means the angle is $\frac{\pi}{2}$.]
7. [6pt] Find the general solution of the following linear system.

$$
\left\{\begin{aligned}
w-x+y-z & =-2 \\
2 w-2 x+y+z & =5 \\
3 w-3 x+2 y & =3
\end{aligned}\right.
$$

That is, find $\overrightarrow{\boldsymbol{p}}$ and $\overrightarrow{\boldsymbol{\beta}_{1}}, \ldots, \overrightarrow{\boldsymbol{\beta}_{\boldsymbol{k}}}$ such that

$$
\left\{\overrightarrow{\boldsymbol{p}}+c_{1} \overrightarrow{\boldsymbol{\beta}_{1}}+\cdots+c_{k} \overrightarrow{\boldsymbol{\beta}_{\boldsymbol{k}}}: c_{1}, \ldots, c_{k} \in \mathbb{R}\right\}
$$

is the set of all solutions.
8. [6pt] Find the reduced echelon form of

$$
\left[\begin{array}{cccc}
1 & 1 & 5 & 2 \\
1 & 2 & 7 & -3 \\
-2 & -2 & -10 & -3
\end{array}\right] .
$$

9. $[6 \mathrm{pt}]$ Let

$$
A=\left[\begin{array}{cccc}
1 & -2 & 3 & -4 \\
-1 & 2 & -3 & 5 \\
2 & -4 & 6 & -8
\end{array}\right] \text { and }\left[\begin{array}{cccc}
1 & -2 & 3 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

It is known that \boldsymbol{R} can be obtained from \boldsymbol{A} by performing some row operations. Find a matrix \boldsymbol{C} such that $\boldsymbol{C A}=\boldsymbol{R}$.
10. [extra 2 pt$]$???

Page	Points	Score
1	6	
2	6	
3	6	
4	6	
5	6	
6	2	
Total	$30(+2)$	

