國立中山大學	NATIONAL SUN YAT-SEN UNIVERSITY
線性代數(一)	MATH 103 / GEAI 1215: Linear Algebra I

第一次期中考

October 8, 2018

Midterm 1

姓名 Name :_____

學號 Student ID # :_____

Lecturer:Jephian Lin 林晉宏Contents:cover page,6 pages of questions,
score page at the endTo be answered:on the test paper
Duration:Duration:110 minutesTotal points:30 points + 2 extra points

SAMPLE

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by **underlining it or circling it**. If multiple answers are shown then no marks will be awarded.

1. [1pt] Suppose $S = \{\vec{z_1}, \vec{z_2}, \dots, \vec{z_n}\}$ is a set of *n* vectors over \mathbb{R} . Write down the definition of that " \vec{v} is a *linear combination* of vectors in *S*."

2. [1pt] Suppose $\vec{p} = (p_1, \ldots, p_n)$ and $\vec{q} = (q_1, \ldots, q_n)$ are two vectors in \mathbb{R}^n . Write down the definition of the *inner product* of \vec{p} and \vec{q} .

3. [2pt] Give a linear system in echelon form with two free variables, and indicate the free variables.

4. [2pt] Give two 3×3 matrices such that one is singular while the other is nonsingular.

5. Let

$$\vec{u} = (0, 1, -1, -1, -1)$$
 and
 $\vec{v} = \left(\sqrt{3}, \frac{2+3\sqrt{3}}{2}, \frac{-2+\sqrt{3}}{2}, \frac{-2+\sqrt{3}}{2}, \frac{-2+\sqrt{3}}{2}\right).$

(a) [1pt] Find the length $\|\vec{u}\|$.

(b) [1pt] Find the length $\|\vec{v}\|$.

(c) [2pt] Find the angle between \vec{u} and \vec{v} .

6. [2pt] Let $\vec{p} = (1, 2, 3, 4, 5)$. Find a vector \vec{q} that is parallel to \vec{p} and a vector \vec{r} that is orthogonal to \vec{p} . [Note: "parallel" means the angle is 0 or π ; "orthogonal" means the angle is $\frac{\pi}{2}$.]

7. [6pt] Find the general solution of the following linear system.

$$\begin{cases} w - x + y - z = -2\\ 2w - 2x + y + z = 5\\ 3w - 3x + 2y = 3 \end{cases}$$

That is, find \overrightarrow{p} and $\overrightarrow{\beta_1}, \ldots, \overrightarrow{\beta_k}$ such that

$$\{\vec{p} + c_1 \vec{\beta_1} + \dots + c_k \vec{\beta_k} : c_1, \dots, c_k \in \mathbb{R}\}$$

is the set of all solutions.

8. [6pt] Find the reduced echelon form of

$$\begin{bmatrix} 1 & 1 & 5 & 2 \\ 1 & 2 & 7 & -3 \\ -2 & -2 & -10 & -3 \end{bmatrix}.$$

9. [6pt] Let

$$A = \begin{bmatrix} 1 & -2 & 3 & -4 \\ -1 & 2 & -3 & 5 \\ 2 & -4 & 6 & -8 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & -2 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

It is known that R can be obtained from A by performing some row operations. Find a matrix C such that CA = R.

10. [extra 2pt] ???

Page	Points	Score
1	6	
2	6	
3	6	
4	6	
5	6	
6	2	
Total	30 (+2)	