國立中山大學	NATIONAL SUN YAT-SEN UNIVERSITY		
線性代數(一)	MATH 103 / GEAI 1215: Linear Algebra I		
第二次期中考	November 19, 2	018 Mid	lterm 2
姓名 Name :		_	
學號 Student ID $\#$:		_	
	Lecturer:	Jephian Lin 林晉宏	
	Contents:	cover page,	

8 pages of questions, score page at the end
To be answered: on the test paper
Duration: 110 minutes
Total points: 35 points + 2 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your **Name** and **Student ID** # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by **underlining it or circling it**. If multiple answers are shown then no marks will be awarded.
- 可用中文或英文作答

1. [5pt] Find the inverse of the matrix

$$\boldsymbol{A} = \begin{bmatrix} 1 & -1 & -1 & -4 \\ 2 & -1 & -1 & -6 \\ 0 & -1 & 0 & -2 \\ 2 & -2 & -3 & -7 \end{bmatrix}.$$

2. [2pt] Suppose V is a vector space over \mathbb{R} and S is a nonempty subset of V. What property (or properties) you have to check in order to make sure S is a subspace of V?

3. [3pt] For each of V below, write T or F in the box to indicate V is a vector space over \mathbb{R} or not. If your answer is F, provide a brief reason of why V is not a vector space.

(a)
$$V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 : x, y \in \mathbb{Z} \right\}.$$

Brief reason if F:

(b) $V = \{ X \in \mathcal{M}_{n \times n} : AX = 0 \}$. Here $\mathcal{M}_{n \times n}$ is the set of all $n \times n$ real matrices, and A is a matrix in $\mathcal{M}_{n \times n}$.

(c)
$$V = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 0 \right\}.$$

Brief reason if F:

(d)
$$V = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : x + y + z = 1 \right\}.$$

Brief reason if F:

4. [2pt] Let $S = \{\vec{v}_1, \ldots, \vec{v}_k\}$ be a set of vectors in a vector space over \mathbb{R} . Write down the definition of that S is linearly independent. (Your answer should be clear in mathematical sense instead of a descriptive sentence in human language.)

5. [2pt] Find all possible solutions
$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$
 that satisfies $\begin{bmatrix} 1 & 1 & -1 \\ 2 & -1 & 0 \\ 4 & 1 & -2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

6. [1pt] Is the set
$$S = \left\{ \begin{bmatrix} 1\\2\\4 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} -1\\0\\-2 \end{bmatrix} \right\}$$
 linearly independent? Provide your reason.

7. [5pt] Let

$$V = \operatorname{span}\left(\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\6\\9 \end{bmatrix}, \begin{bmatrix} 1\\3\\3 \end{bmatrix}, \begin{bmatrix} -2\\-5\\-6 \end{bmatrix} \right\} \right).$$

Find a basis and the dimension of V.

8. Let

$$\boldsymbol{A} = \begin{bmatrix} 1 & 3 & 1 & -2 \\ 2 & 6 & 3 & -5 \\ 3 & 9 & 3 & -6 \end{bmatrix}.$$

(a) [2pt] Find **a basis** and **the dimension** of the row space of **A**.

(b) [3pt] Find **a basis** and **the dimension** of the null space of A.

9. [5pt] Suppose $S = \{\vec{w}_1, \ldots, \vec{w}_k\}$ is a set of nonzero vectors in \mathbb{R}^n such that $\vec{w}_i \cdot \vec{w}_j = 0$ for any distinct *i* and *j*. (That is, any two vectors in *S* are orthogonal to each other.) Show that *S* is linearly independent.

10. [5pt] Let $S = {\vec{w}_1, ..., \vec{w}_k}$ be a set of vectors in a vector space over \mathbb{R} . Suppose S is linearly independent. Show that $S \cup {\vec{v}}$ is linearly independent if and only if the vector \vec{v} is not in span(S).

11. [extra 2pt] Let \mathcal{S}_n be the set of all $n \times n$ real symmetric matrices. Let

$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \text{ and } \boldsymbol{O} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

be two matrices in \mathcal{S}_3 . Find a basis for

$$V = \{ \boldsymbol{X} \in \mathcal{S}_3 : \boldsymbol{A}\boldsymbol{X} = O \}.$$

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	5	
8	2	
Total	35 (+2)	