線性代數（一）
第二次期中考

姓名 Name： \qquad
學號 Student ID \＃： \qquad

Lecturer：Jephian Lin 林晉宏
Contents：cover page， 8 pages of questions， score page at the end
To be answered：on the test paper
Duration： 110 minutes
Total points： $\mathbf{3 5}$ points +2 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－可用中文或英文作答

1. [5pt] Find the inverse of the matrix

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & -1 & -1 & -4 \\
2 & -1 & -1 & -6 \\
0 & -1 & 0 & -2 \\
2 & -2 & -3 & -7
\end{array}\right] .
$$

2. [2pt] Suppose V is a vector space over \mathbb{R} and S is a nonempty subset of V. What property (or properties) you have to check in order to make sure S is a subspace of V ?
3. [3pt] For each of V below, write T or F in the box to indicate V is a vector space over \mathbb{R} or not. If your answer is F , provide a brief reason of why V is not a vector space.
(a) $V=\left\{\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{2}: x, y \in \mathbb{Z}\right\}$.
\square Brief reason if F :
(b) $V=\left\{\boldsymbol{X} \in \mathcal{M}_{n \times n}: \boldsymbol{A} \boldsymbol{X}=0\right\}$. Here $\mathcal{M}_{n \times n}$ is the set of all $n \times n$ real matrices, and \boldsymbol{A} is a matrix in $\mathcal{M}_{n \times n}$.

Brief reason if F :
(c) $V=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=0\right\}$.
\square Brief reason if F :
(d) $V=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3}: x+y+z=1\right\}$.
\square Brief reason if F :
4. [2pt] Let $S=\left\{\boldsymbol{\vec { v }}_{1}, \ldots, \overrightarrow{\boldsymbol{v}}_{k}\right\}$ be a set of vectors in a vector space over \mathbb{R}. Write down the definition of that S is linearly independent. (Your answer should be clear in mathematical sense instead of a descriptive sentence in human language.)
5. [2pt] Find all possible solutions $\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]$ that satisfies

$$
\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & -1 & 0 \\
4 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

6. [1pt] Is the set $S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ -2\end{array}\right]\right\}$ linearly independent? Provide your reason.
7. [5pt] Let

$$
V=\operatorname{span}\left(\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
3
\end{array}\right],\left[\begin{array}{l}
-2 \\
-5 \\
-6
\end{array}\right]\right\}\right)
$$

Find a basis and the dimension of V.
8. Let

$$
\boldsymbol{A}=\left[\begin{array}{llll}
1 & 3 & 1 & -2 \\
2 & 6 & 3 & -5 \\
3 & 9 & 3 & -6
\end{array}\right]
$$

(a) $[2 \mathrm{pt}]$ Find a basis and the dimension of the row space of \boldsymbol{A}.
(b) [3pt] Find a basis and the dimension of the null space of \boldsymbol{A}.
9. [5pt] Suppose $S=\left\{\overrightarrow{\boldsymbol{w}}_{1}, \ldots, \overrightarrow{\boldsymbol{w}}_{k}\right\}$ is a set of nonzero vectors in \mathbb{R}^{n} such that $\overrightarrow{\boldsymbol{w}}_{i} \cdot \overrightarrow{\boldsymbol{w}}_{j}=0$ for any distinct i and j. (That is, any two vectors in S are orthogonal to each other.) Show that S is linearly independent.
10. [5pt] Let $S=\left\{\overrightarrow{\boldsymbol{w}}_{1}, \ldots, \overrightarrow{\boldsymbol{w}}_{k}\right\}$ be a set of vectors in a vector space over \mathbb{R}. Suppose S is linearly independent. Show that $S \cup\{\overrightarrow{\boldsymbol{v}}\}$ is linearly independent if and only if the vector $\overrightarrow{\boldsymbol{v}}$ is not in $\operatorname{span}(S)$.
11. [extra 2 pt] Let \mathcal{S}_{n} be the set of all $n \times n$ real symmetric matrices. Let

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \text { and } \boldsymbol{O}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

be two matrices in \mathcal{S}_{3}. Find a basis for

$$
V=\left\{\boldsymbol{X} \in \mathcal{S}_{3}: \boldsymbol{A} \boldsymbol{X}=O\right\} .
$$

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	5	
8	2	
Total	$35(+2)$	

