線性代數（一）
第一次期中考

姓名 Name： \qquad
學號 Student ID \＃： \qquad

Lecturer：Jephian Lin 林晉宏
Contents：cover page， 6 pages of questions， score page at the end
To be answered：on the test paper
Duration： 110 minutes
Total points： $\mathbf{3 0}$ points +2 extra points

Do not open this packet until instructed to do so．

Instructions：

－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．

1. [1pt] Suppose $S=\left\{\overrightarrow{\boldsymbol{q}_{\mathbf{1}}}, \overrightarrow{\boldsymbol{q}_{\mathbf{2}}}, \ldots, \overrightarrow{\boldsymbol{q}_{\boldsymbol{n}}}\right\}$ is a set of n vectors over \mathbb{R}. Write down the definition of that " $\overrightarrow{\boldsymbol{v}}$ is a linear combination of vectors in S."
2. [1pt] Suppose $\overrightarrow{\boldsymbol{u}}=\left(u_{1}, \ldots, u_{n}\right)$ and $\overrightarrow{\boldsymbol{v}}=\left(v_{1}, \ldots, v_{n}\right)$ are two vectors in \mathbb{R}^{n}. Write down the definition of the inner product of $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$.
3. [2pt] Give a linear system of two equations in reduced echelon form with four free variables, and indicate the free variables. [The answer is not unique. You only need to find one.]
4. [2pt] Suppose \boldsymbol{A} is a 5×5 nonsingular matrix. What is the minimum number of nonzero entries on \boldsymbol{A} ? [Justify your answer with an example of such \boldsymbol{A} and explain why the number of nonzero entries cannot be fewer.]
5. Let

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{u}}=(1,0,1,0,) \text { and } \\
& \overrightarrow{\boldsymbol{v}}=(-\sqrt{3}, 1,-\sqrt{3}, 1) .
\end{aligned}
$$

(a) $[1 \mathrm{pt}]$ Find the length $|\overrightarrow{\boldsymbol{u}}|$.
(b) $[1 \mathrm{pt}]$ Find the length $|\overrightarrow{\boldsymbol{v}}|$.
(c) $[2 \mathrm{pt}]$ Find the angle between $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$.
(d) $[2 \mathrm{pt}]$ Find a vector $\overrightarrow{\boldsymbol{p}}$ that is orthogonal to both of $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$. [The answer is not unique. You only need to find one.]
6. [6pt] Find the general solution of the following linear system.

$$
\left\{\begin{array}{r}
w+2 x+y+4 z=2 \\
2 w+4 x+3 y-4 z=3 \\
3 w+6 x+3 y+12 z=6
\end{array}\right.
$$

That is, find $\overrightarrow{\boldsymbol{p}}$ and $\overrightarrow{\boldsymbol{\beta}_{\mathbf{1}}}, \ldots, \overrightarrow{\boldsymbol{\beta}_{\boldsymbol{k}}}$ such that

$$
\left\{\overrightarrow{\boldsymbol{p}}+c_{1} \overrightarrow{\boldsymbol{\beta}_{1}}+\cdots+c_{k} \overrightarrow{\boldsymbol{\beta}_{\boldsymbol{k}}}: c_{1}, \ldots, c_{k} \in \mathbb{R}\right\}
$$

is the set of all solutions.
7. [6pt] Let

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 3 & 3 & -3 \\
-2 & -6 & -6 & 7 \\
3 & 9 & 9 & -9
\end{array}\right] \text { and } \boldsymbol{R}=\left[\begin{array}{llll}
1 & 3 & 3 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

It is known that \boldsymbol{R} can be obtained from \boldsymbol{A} by performing some row operations. Find a matrix \boldsymbol{C} such that $\boldsymbol{C A}=\boldsymbol{R}$. [The answer is not unique. You only need to find one.]
8. [6pt] Find a matrix \boldsymbol{A} whose reduced echelon form is

$$
\left[\begin{array}{cccc}
1 & 3 & 0 & -2 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and every entry of \boldsymbol{A} is nonzero. [The answer is not unique. You only need to find one.]
9. [extra 2 pt] There are three types of 2×2 elementary matrices:
(1) $\rho_{i} \leftrightarrow \rho_{j}:\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(2) $k \rho_{i}:\left[\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right]$ or $\left[\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right]$
(3) $k \rho_{i}+\rho_{j}:\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right]$ or $\left[\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right]$

Find four matrices $\boldsymbol{E}_{\mathbf{1}}, \boldsymbol{E}_{\mathbf{2}}, \boldsymbol{E}_{\mathbf{3}}, \boldsymbol{E}_{\mathbf{4}}$ of type (2) or type (3) such that

$$
\boldsymbol{E}_{4} \boldsymbol{E}_{3} \boldsymbol{E}_{2} \boldsymbol{E}_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

[This means the first operation (swapping) can be done by only using the second and the third operations.]

Page	Points	Score
1	6	
2	6	
3	6	
4	6	
5	6	
6	2	
Total	$30(+2)$	

