國立中山大學	NATIONAL SUN YAT-SEN UNIVERSITY		
線性代數(一)	MATH 103 / GEAI 1215: Linear Algebra I		
第一次期中考	October 8, 201	18 Midterm 1	
姓名 Name :_		_	
學號 Student ID # :_		_	
	T	1.1.1.计码它	
		Jephian Lin 林晉宏	
	Contents:	cover page,	
		6 pages of questions,	

score page at the end To be answered: on the test paper Duration: **110 minutes** Total points: **30 points** + 2 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by **underlining it or circling it**. If multiple answers are shown then no marks will be awarded.

1. [1pt] Suppose $S = \{ \overrightarrow{p_1}, \overrightarrow{p_2}, \dots, \overrightarrow{p_n} \}$ is a set of *n* vectors over \mathbb{R} . Write down the definition of that " \vec{v} is a *linear combination* of vectors in *S*."

2. [1pt] Suppose $\vec{a} = (a_1, \ldots, a_n)$ and $\vec{b} = (b_1, \ldots, b_n)$ are two vectors in \mathbb{R}^n . Write down the definition of the *inner product* of \vec{a} and \vec{b} .

3. [2pt] Give a linear system of three equations in reduced echelon form with three free variables, and indicate the free variables. [The answer is not unique. You only need to find one.]

4. [2pt] Suppose A is a 5 × 5 nonsingular matrix. What is the minimum number of nonzero entries on A? [Justify your answer with an example of such A and explain why the number of nonzero entries cannot be fewer.]

5. Let

$$ec{oldsymbol{u}} = (1, 1, 0, 0,) ext{ and } ec{oldsymbol{v}} = \left(\sqrt{3}, \sqrt{3}, 1, 1
ight).$$

(a) [1pt] Find the length $|\vec{u}|$.

(b) [1pt] Find the length $|\vec{v}|$.

(c) [2pt] Find the angle between \vec{u} and \vec{v} .

(d) [2pt] Find a vector \vec{p} that is orthogonal to both of \vec{u} and \vec{v} . [The answer is not unique. You only need to find one.]

6. [6pt] Find the general solution of the following linear system.

$$\begin{cases} w + 3x + y - 2z = -1\\ 2w + 6x + 3y - 5z = -7\\ 3w + 9x + 3y - 6z = -3 \end{cases}$$

That is, find \overrightarrow{p} and $\overrightarrow{\beta_1}, \ldots, \overrightarrow{\beta_k}$ such that

$$\{\vec{p} + c_1 \vec{\beta_1} + \dots + c_k \vec{\beta_k} : c_1, \dots, c_k \in \mathbb{R}\}$$

is the set of all solutions.

7. [6pt] Let

$$\boldsymbol{A} = \begin{bmatrix} 1 & 5 & 4 & 3 \\ 2 & 10 & 8 & 7 \\ -1 & -5 & -4 & -3 \end{bmatrix} \text{ and } \boldsymbol{R} = \begin{bmatrix} 1 & 5 & 4 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

It is known that \mathbf{R} can be obtained from \mathbf{A} by performing some row operations. Find a matrix \mathbf{C} such that $\mathbf{C}\mathbf{A} = \mathbf{R}$. [The answer is not unique. You only need to find one.]

8. [6pt] Find a matrix \boldsymbol{A} whose reduced echelon form is

$$\begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

and every entry of \boldsymbol{A} is nonzero. [The answer is not unique. You only need to find one.]

9. [extra 2pt] There are three types of 2×2 elementary matrices:

(1)
$$\rho_i \leftrightarrow \rho_j$$
: $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
(2) $k\rho_i$: $\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$ or $\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$
(3) $k\rho_i + \rho_j$: $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ or $\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$

Find four matrices E_1, E_2, E_3, E_4 of type (2) or type (3) such that

$$\boldsymbol{E_4}\boldsymbol{E_3}\boldsymbol{E_2}\boldsymbol{E_1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

[This means the first operation (swapping) can be done by only using the second and the third operations.]

Page	Points	Score
1	6	
2	6	
3	6	
4	6	
5	6	
6	2	
Total	30 (+2)	