國立中山大學	NATIONAL SUN YAT-SEN UNIVERSITY	
線性代數(一)	MATH 103 / GEAI 1215: Linear Algebra I	
期末考	January 7, 2019	Final Examination
姓名 Name	:	_
學號 Student ID #	:	_
	Lecturer:	Jephian Lin 林晉宏
	Contents:	cover page,
		9 pages of questions,
		score page at the end
	To be answered:	on the test paper

Do not open this packet until instructed to do so.

Duration: 110 minutes

Total points: **35 points** + 7 extra points

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining it or circling it. If multiple answers are shown then no marks will be awarded.
- 可用中文或英文作答

1. [5pt] Find the general solution of the following linear system.

$$\begin{cases} w - 2x + 3y - z = 2\\ 2w - 4x + 6y - 1z = 6\\ 3w - 6x + 9y - 3z = 6 \end{cases}$$

That is, find \overrightarrow{p} and $\overrightarrow{\beta_1}, \ldots, \overrightarrow{\beta_k}$ such that

$$\{\vec{p} + c_1 \vec{\beta_1} + \dots + c_k \vec{\beta_k} : c_1, \dots, c_k \in \mathbb{R}\}$$

is the set of all solutions.

2. [5pt] Suppose $S = \{\vec{w}_1, \ldots, \vec{w}_k\}$ is a set of nonzero vectors in \mathbb{R}^n such that $\vec{w}_i \cdot \vec{w}_j = 0$ for any distinct *i* and *j*. (That is, any two vectors in *S* are orthogonal to each other.) Show that *S* is linearly independent.

3. [3pt] Let $\vec{x} = \begin{bmatrix} 3+i \\ i \\ 2+i \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} 1-2i \\ 2+3i \\ 1 \end{bmatrix}$. Find the values of the inner products $\langle \vec{x}, \vec{y} \rangle, \langle \vec{y}, \vec{x} \rangle$ and the norm $|\vec{x}|$ in \mathbb{C}^3 .

4. [2pt] Let
$$\vec{u} = \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Find \vec{x} and \vec{y} such that $\vec{u} = \vec{x} + \vec{y}$ with $\vec{x} \in \text{span}\{\vec{v}\}$ and $\langle \vec{v}, \vec{y} \rangle = 0$.

5. [5pt] Let
$$V = \operatorname{span} \left\{ \begin{bmatrix} 1\\-2\\3\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-4\\6\\-1 \end{bmatrix}, \begin{bmatrix} 3\\-6\\9\\-3 \end{bmatrix} \right\}$$
. Find a basis of V and a basis of V and a

4

6. [5pt] Consider the following data:

Find a line f(x) = ax + b such that the error

$$\sum_{i=1}^{5} (f(x_i) - y_i)^2$$

is minimized.

[The orthogonal projection of a vector \vec{v} onto the column space of a matrix A is $A(A^{\top}A)^{-1}A^{\top}\vec{v}$. Your answer can be a formula without computing the final answer, but you have to specify all matrices or vectors occurred in your formula.]

7. [5pt] Let $f: V \to W$ be a homomorphism. Show that $f^{-1}(Y)$ is a subspace of V if Y is a subspace of W.

8. [5pt] Let $f: V \to W$ be a homomorphism. Show that f is one-to-one if and only if nullspace $(f) = \{\vec{0}\}$.

9. Let

$$\vec{v}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 10\\1\\0 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 5\\10\\1 \end{bmatrix}, \text{ and } \vec{u} = \begin{bmatrix} 4\\3 \end{bmatrix}.$$

Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be a homomorphism such that

$$f(\vec{\boldsymbol{v}}_1) = f(\vec{\boldsymbol{v}}_2) = f(\vec{\boldsymbol{v}}_3) = \vec{\boldsymbol{u}}.$$

(a) [extra 1pt] Find range(f) in set notation and give a brief reason to your answer. [Hint: $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a basis of \mathbb{R}^3 .]

(b) [extra 2pt] Find the rank of f and the nullity of f.

(c) [extra 2pt] Find a basis of nullspace(f) and give a brief reason to your answer.

10. [extra 2pt] Recall that the trace of a matrix is the sum of its diagonal entries. That is,

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{i,i}$$

if $A = [a_{i,j}]$ is an $n \times n$ matrix. Let $\mathcal{M}_{n \times n}$ be the set of all $n \times n$ matrices. Then

$$f: \mathcal{M}_{n \times n} \to \mathbb{R}$$
$$A \mapsto \operatorname{tr}(A)$$

is a homomorphism. (You don't have to check this fact.) Find the rank of f and the nullity of f in terms of n.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	5	
8	5	
9	2	
Total	35 (+7)	