
1 Joint Model

For each individual, we observe his/her survival data and covariates. Denote

the ith individual’s event time (e.g. survival time or progression-free sur-

vival time) and censoring time by Ti and Ci, respectively. We thus observe

Xi = min(Ti, Ci) and the failure indicator δi, which is equal to 1 if the failure

is observed (Ti < Ci) and 0 otherwise. We assume that Ci is independent

of Ti and covariates. To simplify the model, here we only consider a single

covariate which is repeatedly measured such as the longitudinal CA125. De-

note by yi(t) the value of the longitudinal outcome at time point t for the ith

individual. In practice, we cannot observe yi(t) at all time points; instead we

only observe at several time points ti1, . . . , tini
. In vector notation, we denote

yi = (yi(ti1), . . . , yi(tij)) and ti = (ti1, . . . , tini
). The observed longitudinal

CA125 thus consist of the measurements yij = yi(tij), j = 1, . . . , ni, yi(t) is

measured with error; hence we also denote the true (uncontaminated with

error) and unobserved longitudinal outcome at time point t by mi(t). Other

covariates are time-independent, and let ui = (ui1, . . . , uik)
T denote as the

time-independent covariates for the ith subject.

The CA125 distribution at baseline (before surgery) was skewed; there-

fore, for the reminder of this paper we will work with the square root of

CA125 values and refer to the transformed covariate as yij.

As shown in figure 1, there was clearly a lot of heterogeneity in the base-

line CA125 values and the slopes of the CA125 profiles between individuals.
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Therefore, it is reasonable to use the mixed-effects model to fit the CA125

trajectories. Moreover, the CA125 trajectories seem stable after a cut point

(around 2 months, roughly after 1 or 2 rounds of chemotherapy) and before

the end of the first-line chemotherapy. Therefore, it is reasonable to model

the observed CA125 values as follows:

yij = mi(tij) + ϵij = (a0 + b0i) + (a1 + b1i)tij + a2(tij − c)Itij−c + ϵij (1)

where c is the cut point, Ix is the indicator function which is equal to 1 if x ≥

0, and 0 otherwise; mi(tij) is the true and unobserved CA125 values at time tij

for the ith subject; ϵij is the error with the distribution N(0, σ2) (ϵij1 and ϵij2

are independent if j1 ̸= j2); a0 and a1 are the population intercept and slope

before the cut point, respectively; a2 is the difference of the population slopes

between the curves before and after the cut point; and b0i and b1i, accounting

for the individual’s heterogenity of the intercepts and slopes before the cut

point, respectively, are assumed to be a bivariate normal random variable,

i.e.,  b0i

b1i

 ∼ N


 0

0

 ,

 σ00 σ01

σ01 σ11




Denote Σ =

 σ00 σ01

σ01 σ11

.

Note that given the cut point c, (1) is the usual linear mixed-effects model.

We proposed 2 methods to estimate the cut-point, which will be introduced
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in the next section. For simplicity, we consider each trajactory of the CA125

curve has the same cut point. The model can then be easily extended to

allow different cut points for different trajactories.

The aim is to link the true value of the longitudinal outcome (CA125) at

time t, mi(t), with the survival time Ti. We model the hazard of failure using

the Cox PH model, where the hazard depends on the longitudinal covariate

only through its true current value (without error).Therefore, the hazard is

modeled as follows:

h(t|ui,yi, ti) = h0(t) exp{uiα+β((a0+b0i)+(a1+b1i)t+a2(t−c)It−c)}, (2)

where h0(t) is the baseline hazard at time t, α = (α1, . . . , αk)
T is the co-

efficient vector, ui = (u1i, . . . , uki) is the ith individual’s time-independent

covariate vector, and β is the coefficient for the longitudinal covariate. Or

equavalently,

h(t|ui,mi(t)) = h0(t) exp{αui + βmi(t).} (3)

The joint model is composed of (1) and (3). The likelihood for the observed

data is given by

n∏
i=1

∫ ∞

−∞


mi∏
j=1

f(yij|c,a, bi, σ2)

 f(bi|Σ)f(Xi, δi|bi, h0, β,α)

 , (4)
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where

f(yij|c,a, bi, σ2) = (2πσ2)−1/2 exp{−
(
yij − a0 − b0i − a1tij − b1itij − a2(tij − c)Itij−c

)2
/2σ2},(5)

f(bi|Σ) = (2π|Σ|)−1/2 exp{−(bi)
TΣ−1bi/2}, (6)

and

f(Xi, δi|c, bi, h0, β,α)

= [h0(t) exp{β((a0 + b0i) + (a1 + b1i)Xi + a2(Xi − c)IXi−c)}]δi

+ exp[−
∫ Xi

0
h0(u) exp{β((a0 + b0i) + (a1 + b1i)u+ a2(u− c)Iu−c)}du]

In the next section, we will introduce how to estimate the cut point and other

parameters.

2 Estimating parameters

2.1 Estimating the cut point

Below we provide two possible methods to estimate the cut point.

(1) empirical method: By observing all the patients’ CA125 profiles or from

previous experience, sometimes we have knowledge about where the change

point is.

(2) maximum likelihood method: The second method is based on the likeli-

hood (5). By maximizing this likelihood function, we can obtain an estimate
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of the cut point. Note that given the cut point c, 1 is a linear mixed-effects

model. Therefore, given the cut point c, it is easy to obtain the maximum

likelihood estimate using the R commend lme for other parameters. There-

fore, given c, it is easy to obtain the maximum likelihood value (for that c).

By searching for c that gives the largest maximum likelihood value, we can

obtain the maximum likelihood estimator for c.

In the 2nd version of the codes for our joint model, we provide the code

computing the maximum likelihood estimate for the change point.
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