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Preface

Here are lecture notes of the course delivered at the Giessen University dur-
ing my visit as DFG guest professor (1999-2000 teaching year). The audi-
ence consisted of graduate and PhD students, as well as young researchers
in the field of nonlinear analysis, and the aim was to provide them with
a starting point to read monographs on spectral theory and mathematical
physics. According to introductory level of the course, it was required a
standard knowledge of real and complex analysis, as well as basic facts from
linear functional analysis (like the closed graph theorem). It is desired, but
not necessary, some familiarity with differential equations and distributions.
The notes contain simple examples and exercises. Sometimes we omit proofs,
or only sketch them. One can consider corresponding statements as prob-
lems (not always simple). Remark also that the second part of Section 9 is
not elementary. Here I tried to describe (frequently, even without rigorous
statements) certain points of further development. The bibliography is very
restricted. It contains few books and survey papers of general interest (with
only one exception: [9]).
It is a pleasant duty for me to thank Thomas Bartsch who initiated my

visit and the subject of course, as well as all the members of the Mathematical
Institute of Giessen University, for many interesting and fruitful discussions.
Also, I am grateful to Petra Kuhl who converted my handwritten draft into
a high quality type-setting.
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1 A bit of quantum mechanics

1.1 Axioms

Quantum mechanics deals with microscopic objects like atoms, molecules,
etc. Here, as in any physical theory, we have to consider only those quantities
which may be measured (at least in principle). Otherwise, we go immediately
to a kind of scholastic. Physical quantities, values of which may be found
by means of an experiment (or measured) are called observables. It turns
out to be that in quantum mechanics it is impossible, in general, to predict
exactly the result of measurement. This result is a (real) random variable
and, in fact, quantum mechanics studies lows of distribution of such random
variables.
Now we discuss a system of axioms of quantum mechanics suggested by

J. von Neumann.

Axiom 1.1. States of a quantum system are nonzero vectors of a complex
separable Hilbert space H, considered up to a nonzero complex factor. There
is a one-to-one correspondence between observable and linear self-adjoint op-
erators in H. In what follows we consider states as unit vectors in H.
If a is an observable, we denote by â the corresponding operator. We

say that observables a1, . . . , an are simultaneously measurable if their values
may be measured up to an arbitrarily given accuracy in the same experiment.
This means that for an arbitrary state ψ ∈ H the random variables a1, . . . , an
have a simultaneous distribution function Pψ(λ1, . . . ,λn), i.e. Pψ(λ1, . . . ,λn)
is a probability that the values of observables a1, . . . , an measured in the state
ψ are less or equal to λ1, . . . ,λn, respectively.

Axiom 1.2. Observables a1, . . . , an are simultaneously measurable if and only
if the self-adjoint operators â1, . . . , ân mutually commutes. In this case

(1.1) Pψ(λ1, . . . ,λn) = E
(1)
λ1
E
(2)
λ2
. . . E

(n)
λn

ψ 2,

where E
(k)
λ is the spectral decomposition of unit corresponding to the operator

âk.

It is clear that the right-hand side of (1.1) depends on the state itself, not
on representing unit vector ψ (ψ is defined up to a complex factor ζ, |ζ = 1).
Also this expression does not depend on the order of observables, since the
spectral projectors E

(k)
λ commute.

Among all observables there is one of particular importance: the energy.
Denote by H the corresponding operator. This operator is called frequently
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the (quantum) Hamiltonian, or the Schrödinger operator. It is always as-
sumed that H does not depend explicitly on time.

Axiom 1.3. There exists a one parameter group Ut of unitary operators
(evolution operator) that map an initial state ψ0 at the time t = 0 to the
state ψ(t) = Utψ0 at the time t. The operator Ut is of the form

(1.2) Ut = e
− i
h
tH ,

where h is the Plank constant. If ψ0 ∈ D(H), the domain of H, then the
H−valued function ψ(t) is differentiable and

(1.3) ih
dψ(t)

dt
= Hψ(t).

Thus, the evolution of quantum systems is completely determined by its
Hamiltonian H. Equation (1.3) is called the Schrödinger equation.

Axiom 1.4. To each non-zero vector of H it corresponds a state of quantum
system and every self-adjoint operator in H corresponds to an observable.

The last axiom is, in fact, too strong and sometimes one needs to weaken
it. However, for our restricted purpose this axiom is sufficient.
Now let us discuss some general consequences of the axioms. Let a be

an observable and â the corresponding self-adjoint operator with the domain
D(â). We denote by aψ the mean value, or mathematical expectation, of the
observable a at the state ψ.
If ψ ∈ D(â), then the mean value aψ exists and

(1.4) aψ = (âψ,ψ).

Indeed, due to the spectral theorem

(âψ,ψ) =
∞

−∞
λd(Eλψ,ψ)

However,
(Eλψ,ψ) = (E

2
λ,ψ,ψ) = (Eλψ, Eλψ) = Eλψ

2.

Using (1.1), we see that

(âψ,ψ) =
∞

−∞
λd Eλψ

2 =
∞

−∞
λdPψ(λ) = aψ.

Denote by δψa the dispersion of a at the state ψ, i.e. the mean value of
(a− aψ)2.
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The dispersion δψa exists if ψ ∈ D(â). In this case

(1.5) δψa = âψ − aψψ 2.

The first statement is a consequence of the spectral theorem (consider it as
an exercise). Now consider a self-adjoint operator (â− aψI)2, where I is the
identity operator. Applying (1.4) to this operator, we have

δψa = ((â− aψI)2ψ,ψ) = ((â− aψI)ψ, (â− aψI)ψ) = âψ − aψ 2.

Now we have the following important

Claim 1.5. An observable a takes at a state ψ a definite value λ with prob-
ability 1 if and only if ψ is an eigenvector of â with the eigenvalue λ.

Indeed, if a takes at ψ the value λ with probability 1, then aψ = λ and
δψa = 0. Hence, by (1.5), âψ − λψ = 0, i. e. âψ = λψ. Conversely,
if âψ = λψ, then (1.4) implies that aψ = (âψ,ψ) = λ(ψ,ψ) = λ. Hence,
δψ = âψ − aψψ 2 = âψ − λψ 2 = 0.
Consider a particular case â = H. Assume that at the time t = 0 the

state of our system is an eigenvector ψ0 of H with the eigenvalue λ0. Then

ψ(t) = e−iλ0t/hψ0

solves the Schrödinger equation. However, ψ(t), differs from ψ0 by a scalar
factor and, hence, define the same state as ψ0. Assume now that Utψ0 =
c(t)ψ0. The function c(t) = (Utψ0,ψ0) is continuous, while the group low
Ut+s = UtUs implies that c(t + s) = c(t)c(s). Hence, c(t) is an exponential
function. Therefore, it is differentiable and

Hψ0 = ih
d

dt
Utψ0|t=0 = λ0ψ0,

with λ0 = ih
dc(t)
dt
|t=0.

Thus, the state of quantum system is a stationary state, i. e. it does
not depend on time, if and only if it is represented by an eigenvector of the
Hamiltonian. The equation

Hψ = λψ

for stationary states is called stationary Schrödinger equation.
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1.2 Quantization

Let us consider a classical dynamical systems, states of which are defined
by means of (generalized) coordinates q1, . . . , qn and (generalized) impulses
p1, . . . , pn. Assume that the (classical) energy of our system is defined by

(1.6) Hcl =
n

k=1

p2k
2mk

+ v(q1, . . . , qn),

where mk are real constants, qk ∈ R, pk ∈ R. A typical example is the
system of l particles with a potential interaction. Here n = 3l, the number of
degrees of freedom, q3r−2, q3r−1, q3r are Cartesian coordinates of rth particle,
p3r−2, p3r−1, p3r are the components of corresponding momentum, m3r−2 =
m3r−1 = m3r is the mass of rth particle, and v(q1, q2, . . . , qn) is the potential
energy.
There is a heuristic rule of construction of corresponding quantum system

such that the classical system is, in a sense, a limit of the quantum one. As
the space of states we choose the space L2(Rn) of complex valued functions
of variables q1, . . . , qn. To each coordinate qk we associate the operator q̂k of
multiplication by qk

(q̂kψ)(q1, . . . , qn) = qkψ(q1, . . . , qn).

Exercise 1.6. Let h(q1, . . . , qn) be a real valued measurable function. The
operator ĥ defined by

(ĥψ)(q1, . . . , qn) = h(q1, . . . , qn)ψ(q1, . . . , qn),

D(ĥ) = {ψ ∈ L2(Rn) : h(q)ψ(q) ∈ L2(Rn)},
is self-adjoint.
Thus, q̂k is a self-adjoint operator. We set also

p̂k =
h

i

∂

∂qk
,

with

D(p̂k) = {ψ(q) ∈ L2(Rn) : ∂ψ
∂qk
∈ L2(Rn)},

where ∂ψ/∂qk is considered in the sense of distributions.

Exercise 1.7. Show that p̂k is a self-adjoint operator.
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Now we should define the quantum Hamiltonian as a self-adjoint operator
generated by the expression

(1.7) H = −h
2

2

n

k=1

1

mk

∂2

∂q2k
+ v(q1, . . . , qn).

However, at this point some problems of mathematical nature arise. Roughly
speaking, what does it mean operator (1.7)? It is easy to see that operator
(1.7) is well-defined on the space C∞0 (Rn) of smooth finitely supported func-
tions and is symmetric. So, the first question is the following. Does there
exist a self-adjoint extension of operator (1.7) with C∞0 (Rn) as the domain?
If no, there is no quantum analogue of our classical system. If yes, then how
many of self-adjoint extensions do exist? In the case when there are different
self-adjoint extensions we have different quantum versions of our classical
system. In good cases we may except that there exists one and only one
self-adjoint operator generated by (1.7). It is so if the closure of H defined
first on C∞0 (Rn) is self-adjoint. In this case we say that H is essentially
self-adjoint on C∞0 (Rn).
By means of direct calculation one can verify that the operators of im-

pulses and coordinates satisfy the following Heisenberg commutation rela-
tions

(1.8) [p̂k, q̂k] =
h

i
I, [p̂k, q̂j] = 0, k = j.

In fact, these relations are easy on C∞0 (Rn), but there are some difficulties
connected with the rigorous sense of commutators in the case of unbounded
operators. We do not go into details here. Remark that there is essentially
one set of operators satisfying relations (1.8). In the classical mechanics
coordinates and impulses are connected by relations similar to (1.8), but
with respect to the Poisson brackets. In our (coordinate) representation
of quantum system with Hamiltonian (1.7) a state is given by a function
ψ(q1, . . . , qn, z) with belongs to L

2(Rn) for every fixed time t. Moreover,

ψ(q1, . . . , qn, t) = e
− i
h
tHψ(q1, . . . , qn, 0)

The Schrödinger equation is now of the form

ih
∂ψ

∂t
= −h

2

2

n

k=1

1

mk

∂2ψ

∂q2k
+ v(q1, . . . , qn)ψ.

The function ψ(q1, . . . , qn, t) is called a wave function of the quantum sys-
tem. (The same term is used frequently for functions ψ(q1, . . . , qn) ∈ L2(Rn)
representing states of the system).
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Let E
(k)
λ be a decomposition of identity for q̂k,

q̂k =
∞

−∞
λdE

(k)
λ .

Then E
(k)
λ is just the operator of multiplication by the characteristic function

of the set
{q = (q1, . . . , qn) ∈ Rn : qk ≤ λ}

Hence the simultaneous distribution of q1, . . . , qn is given by

Pψ(λ1, . . . ,λn) =
λ1

−∞
. . .

λn

−∞
|ψ(q1, . . . , qn)|2dq1 . . . dqn.

Therefore, the square of modulus of a wave function is exactly the
density of simultaneous distribution of q1, . . . , qn. Thus, the probability
that a measurement detects values of coordinates q1, . . . , qn in the intervals
(a1, b1), . . . , (an, bn) respectively is equal to

b1

a1

. . .
bn

an

|ψ(q1, . . . , qn)|2dq1, . . . , dqn.

We have just described the so-called coordinate representation which is, of
course, not unique. There are other representations, e. g. so-called impulse
representation (see [1] for details).
We have considered quantization of classical systems of the form (1.6).

For more general classical systems quantization rules are more complicated.
In addition, let us point out that there exist quantum systems which cannot
be obtained from classical ones by means of quantization, e.g. particles with
spin.

1.3 Heisenberg uncertainty principle

Let us consider two observables a and b, with corresponding operators â and
b̂. Let ψ be a vector such that (âb̂− b̂â)ψ makes sense. The uncertainties of
the results of measurement of a and b in the state ψ are just

∆a = ∆ψa = δψa = âψ − aψψ
∆b = ∆ψb = δψb = b̂ψ − bψψ .

We have

(1.9) ∆a∆b ≥ 1
2
|((âb̂− b̂â)ψ,ψ)|
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Indeed, let â1 = â− aψI, b̂1 = b̂− bψI. Then â1b̂1 − b̂1â1 = âb̂− b̂â. Hence,

|((âb̂− b̂â)ψ,ψ)| = |((â1b̂1 − b̂1â1)ψ,ψ)|
= |(â1b̂1ψ,ψ)− (b̂1â1ψ,ψ)| = |(b̂1ψ, â1ψ)− (â1ψ, b̂1ψ)|
= 2|Im(â1ψ, b̂1ψ)| ≤ 2|(â1ψ, b̂1ψ)| ≤ 2 â1ψ b̂1ψ

= 2 âψ − aψψ b̂ψ − bψψ = 2∆a∆b.
We say that the observables a and b are canonically conjugate if

âb̂− b̂â = h

i
I

In this case the right hand part of (1.8) is independent of ψ and

(1.10) ∆a∆b ≥ h/2

It is so for the components qk and pk of coordinates and momenta, and, as
consequence, we get the famous Heisenberg uncertainly relations

(1.11) ∆pk∆qk ≥ h/2.

Due to Axiom 1.2, two observables are simultaneously measurable if the
corresponding operators commute. Relation (1.11) gives us a quantitative
version of this principle. If an experiment permits us to measure the coordi-
nate qk with a high precision, then at the same experiment we can measure
the corresponding impulse pk only very roughly: the accuracies of these two
measurements are connected by (1.11).

1.4 Quantum oscillator

The classical (1-dimensional) oscillator is a particle with one degree of free-
dom which moves in the potential field of the form

v(x) =
ω2

2
x2, x ∈ R.

The classical energy is of the form

Mcl =
m

2
(ẋ)2 +

mω2

2
x2 =

p2

2m
+
mω2

2
x2,

where m is the mass of the particle, and p = mẋ is its momentum.
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The space of states of the quantum analogue is H = L2(R), the oper-
ators of coordinate and momentum were defined above, and the quantum
Hamiltonian H is a self-adjoint operator generated by the expression

− h

2m

d2

dx2
+
mω2

2
x2.

For the sake of simplicity we set h = m = ω = 1. Then

H =
1

2
(− d

2

dx2
+ x2).

Let H̃ be a linear subspace of L2(R) (not closed!) that consists of all functions
of the form

P (x)e−
x2

2 ,

where P (x) is a polynomial.

Exercise 1.8. H̃ is dense in L2(R).

Now let us introduce the so-called operators of annihilation and birth.

A =
1√
2
(x̂+ ip̂) , A∗ =

1√
2
(x̂− 1p̂)

In fact, one can show that A∗ is the adjoint operator to A, defined on H̃.
However, we do not use this fact. So, one can consider A∗ as a single symbol.
These operators, as well as p̂, x̂ and H, are well-defined on the space H̃ and
map H̃ into itself (verify this). As consequence, on the space H̃ products and
commutators of all these operators are also well-defined. Verify the following
identities (on H̃):

(1.12) [A,A∗] = I,

(1.13) H = A∗A =
1

2
I = AA∗ − 1

2
I,

(1.14) [H,A]−A , [H,A∗] = A∗

Exercise 1.9. Let ψ ∈ H̃ be an eigenvector of H with the eigenvalue λ and
A∗ψ = 0. Then A∗ψ is an eigenvector of H with the eigenvalues λ+ 1.
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Now let

ψ0(x) = e
−x2

2

Then

Hψ0 =
1

2
ψ0,

and ψ0 ∈ H̃ is an eigenvector of H with the eigenvalue 1
2
(verify!). Let us

define vectors ψk ∈ H̃ by

ψk+1 =
√
2A∗ψk,

or

ψk = (
√
2A∗)kψ0.

Exercise 1.10. Hψk = (k +
1
2
)ψk.

Hence, ψk is an eigenvector of H with the eigenvalue (k + 1
2
). Since

ψk ∈ H̃, we have
ψk(x) = Hk(x)e

−x2

2 ,

where Hk(x) are polynomials (the so-called Hermite polynomials). The func-
tions ψk are said to be Hermite functions.

Exercise 1.11. Calculate (Hψk,ψl) and verify that {ψk} is an orthogonal
systems in L2(R) (not normalized).

Exercise 1.12. Show that the system {ψk} may be obtained by means of
orthogonalization of the system

xne−
x2

2 .

Exercise 1.13. Verify the following identities

Hn(x) = (−1)nex2 d
n

dxn
e−x

2

,

dnHn
dxn

= 2n · n! ,
Hn+1(x) = 2xHn(x)− 2nHn−1(x) .

Calculate H0(x), H1(x), H2(x), H3(x) and Hn(x).

Exercise 1.14. Show that {ψk} is an orthogonal basis in L2(R). Moreover,
ψk

2 = 2k · k!√π.
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As consequence, the functions

ψ̃k(x) =
ψk(x)

2kk!
√
π
=

1

2k · k!√πHk(x)e
−x2

2

form an orthonormal basis. In addition,

ψ̃k =
1√
k!
(A∗)kψ̃0.

Since, with respect to the basis {ψk}, the operator H has a diagonal form,
we can consider this operator as self-adjoint, with the domain

D(H) = {ψ ∈ L2(R) :
∞

k=0

|(ψ, ψ̃k)(k + 1
2
)|2 <∞}.

Therefore, the spectrum ofH consists of simple eigenvalues (energy levels)
k+ 1

2
, k = 0, 1, . . . , with corresponding eigenvectors (stationary states of the

oscillator) ψ̃k. In general case, the energy levels are

(1.15) hk = hω(k = +
1

2
), k = 0, 1, . . . ,

with corresponding stationary states

Ph(x) =
4
mω

πh

1

2k · k!Hk(ξ)e
− ξ
2 ,

where

ξ = x
mω

h

The last change of variable reduces general problem to the case h = m =
ω = 1. Moreover, in general case we also have corresponding operators of
annihilation and birth, A and A∗. Formula (1.15) means that the oscillator
may gain or loss energy by portions (quanta) multiple of hω. The minimal
possible energy level is equal to

h0 = hω/2 = 0,

i.e. the quantum oscillator cannot be at absolute rest. Operators A and
A∗, acting on wave functions of stationary states decrease and increase, re-
spectively, the number of quanta, i.e. A∗ generates new quanta while A
annihilates them. This explains the names ”birth” and ”annihilation”. Fi-
nally, let point out that the picture we see in the case of quantum oscillator
is not so typical. In general, the spectrum of a quantum Hamiltonian may
contain points of continuous spectrum, not only eigenvalues.
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2 Operators in Hilbert spaces

2.1 Preliminaries

To fix notation, we recall that a Hilbert space H is a complex linear space
equipped with an inner product (f, g) ∈ C such that

(f, g, ) = (g, f),

(λ, f1 + λ2f2, g) = λ1(f1, g) + λ2(f2, g),

(f,λ, g1 + λ2g2) = λ1(f, g1) + λ2(f, g2),

where λ1,λ2 ∈ C and¯stands for complex conjugation,

(f, f) ≥ 0, f ∈ H,

(f, f) = 0 iff f = 0. Such inner product defines a norm

f = (f, f)1/2

and, by definition, H is complete with respect to this norm.

Exercise 2.1. Prove the following polarization identity

(f, g) =
1

4
[(f + g, f + g)− (f − g, f − g)

+ i(f + ig, f + ig)− i(f − ig, f − ig)]

for every f, g ∈ H.
Let H1 and H2 be two Hilbert spaces. By definition, a linear operator

A : H1 → H2 is a couple of two objects:

- a linear (not necessary dense, or closed) subspace D(A) ⊂ H1 which is
called the domain of A;

- a linear map A : D(A)→ H2.

We use the following notations

kerA = {f ∈ D(A) : Af = 0},
imA = {g ∈ H2 : g = Af, f ∈ D(A)}

for kernel and image of A respectively. (Distinguish imA and Imλ, the
imaginary part of a complex number.)
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The operator A is said to be bounded (or continuous), if there exists a
constant C > 0 such that

(2.1) Af ≤ C f , f ∈ D(A).
The norm A of A is defined as the minimal possible C in (2.1), or

(2.2) A = sup
f∈D(A),f=0

Af

f
.

In this case A can be extended by continuity to the closure D(A) of D(A).
Usually, we deal with operators defined on dense domains, i.e. D(A) = H1.
If such an operator is bounded, we consider it to be defined on the whole
space H1.
If kerA = {0}, we define the inverse operator A−1 : H2 → H1 in the

following way: D(A−1) = imA and for every g ∈ imA we set A−1g = f ,
where f ∈ D(A) is a (uniquely defined) vector such that g = Af .
Let A : H1 → H2 and B : H2 → H3 be linear operators. Their product

(or composition) BA : H1 → H3 is defined by

D(BA) = {f ∈ D(A) : Af ∈ D(B)}, (BA)f = B(Af), f ∈ D(BA).
Certainly, it is possible that imA∩D(B) = {0}. In this case D(BA) = {0}.
The sum of A : H1 → H2 and A2 : H1 → H2 is an operator A1 + A2 :

H1 → H2 defined by

D(A1 +A2) = D(A1) ∩D(A2),
(A1 +A2)f = A1f +A2f.

Again, the case D(A1 +A2) = {0} is possible.
Let A : H1 → H2 be a linear operator. By definition the graph G(A) of A

is a linear subspace of H1⊕H2 consisting of all vectors of the form {f,Af},
f ∈ D(A).
Exercise 2.2. A linear subspace of H1⊕H2 is the graph of a linear operator
if it does not contain vectors of the form {0, g} with g = 0.
A linear operator A : H1 → H2 is said to be closed if its graph G(A)

is a closed subspace of H1 × H2. A is called closable if G(A) is the graph
of some operator A. In this case A is called the closure of A. Equivalently,
A : H1 → H2 is closed if fn ∈ D(A), fn → f in H1 and Afn → g in H
imply f ∈ D(A) and Af = g. A is closable if fn ∈ D(A), fn → 0 in H1 and
Afn → g in H2 imply g = 0.
Now let us list some simple properties of such operators.
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• Every bounded operator A is closable. Such an operator is closed pro-
vided D(A) is closed.

• If A is closed, then kerA is a closed subspace of H1.

• If A is closed and kerA = 0, then A−1 is a closed operator.
Let A1, A2 : H1 → H2 be two linear operators. We say that A2 is an extension
of A1 (in symbols A1 ⊂ A2) if D(A1) ⊂ D(A2) and A2f = A1f , f ∈ D(A1).
Obviously, the closure A of A (if it exists) is an extension of A.

2.2 Symmetric and self-adjoint operators

First, let us recall the notion of adjoint operator. Let A : H1 → H2 be a
linear operator such that D(A) = H1 (important assumption!). The adjoint
operator A∗ : H2 → H1 is defined as follows. The domain D(A

∗) of A∗

consists of all vectors g ∈ H2 with the following property:

there exists g∗ ∈ H∗1 such that (Af, g) = (f, g∗) ∀f ∈ D(A).
Since D(A) is dense in H1, the vector g

∗ is uniquely defined, and we set

A∗g = g∗

In particular, we have

(Af, g) = (f,A∗g), f ∈ D(A), g ∈ D(A∗).

Evidently, g ∈ D(A∗) iff the linear functional l(f) = (Af, g) defined on
D(A) is continuous. Indeed, in this case on can extend l to D(A) = H1 by
continuity. Then, by the Riesz theorem, we have l(f) = (Af, g) = (f, g∗) for
some g∗ ∈ H1.
Let us point out that the operation ∗ of passage to the adjoint operator

reverses arrows: if A : H1 → H2, then A
∗ : H2 → H1. In the language of the

theory of categories this means that ∗ is a contravariant functor.
Now we list a few simple properties of adjoint operators.

• If A1 ⊂ A2, then A∗2 ⊂ A∗1.
• If A is bounded and D(A) = H1, then D(A2) = H2 and A

∗ is bounded.
Moreover, A∗ = A .

• For every linear operator A, with D(A) = H1, A
∗ is a closed operator.
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If E is a linear subspace of H, we denote by E⊥ the orthogonal comple-
ment of E, i.e.

E⊥ = {g ∈ H : (f, g) = 0 ∀f ∈ E}.
Evidently,E⊥ is a closed subspace of H, and E⊥ = (E)⊥.
Exercise 2.3. (i) kerA∗ = (imA)⊥.

(ii) Operators (A∗)−1 and (A−1)∗ exist iff kerA = {0} and imA is dense in
H2.

(iii) In the last case, (A∗)−1 = (A−1)∗.

Proposition 2.4. D(A∗) is dense in H2 iff A is closable. In this case A =
A∗∗ = (A∗)∗.

Proof. By definition of H1 ⊕H2,

({f1, g1}, {f2, g2}) = (f1, f2) + (g1, g2).
Now we have easily that {g, g∗} ∈ G(A∗) iff {g∗,−g} ⊥ G(A) (prove!). This
means that the vectors {A∗g,−g} form the orthogonal complement of G(A).
Hence, G(A) is the orthogonal complement to the space of all vectors of the
form {A∗g,−g}.
The space D(A∗) is not dense in H2 if and only if there exists a vector

h ∈ H2 such that h = 0 and h ⊥ D(A∗), or, which is the same, {0, h} ⊥
{A∗g,−g} for all g ∈ D(A∗). The last means that {0, h} ∈ G(A), i.e. G(A)
cannot be a graph of an operator and, hence, A is not closable.
The last statement of the proposition is an exercise. (Hint: G(A∗∗) =

G(A)).

Now we will consider operators acting in the same Hilbert space H(H =
H1 = H2). Let A : H → H be an operator with dense domain, D(A) = H.
We say that A is symmetric if A ⊂ A∗, i.e.

(Af, g) = (f,Ag) ∀f, g ∈ D(A).
First, we remark that every symmetric operator is closable. Indeed, we have
G(A) ⊂ G(A∗). Since A∗ is closed, (i.e. G(A∗) = G(A∗)), we see that
G(A) ⊂ G(A∗) = G(A∗). Hence, G(A) does not contain any vector of the
form {0, h}, h = 0. Therefore, G(A) is the graph of an operator. It is easy
to see that the closure A of symmetric operator A is a symmetric operator.
An operator A : H→ H is said to be self-adjoint if A = A∗. If A is self-

adjoint, we say that A is essentially self-adjoint. Each self-adjoint operator
is obviously closed. If A is self-adjoint and there exists A−1, then A−1 is
self-adjoint. Indeed, (A−1)∗ = (A∗)−1 = A−1.
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Proposition 2.5. A closed symmetric operator A is self-adjoint if and only
if A∗ is symmetric.

Proof. We prove the first statement only. If A is closed, then, due to Proposi-
tion 2.4, A∗∗ = A. Since A∗ is symmetric, we have A∗ ⊂ A∗∗ = A. However,
A itself is symmetric: A ⊂ A∗. Hence, A ⊂ A∗ ⊂ A and we conclude.
Exercise 2.6. An operatorA with the dense domain is essentially self-adjoint
if and only if A∗ and A∗∗ are well-defined, and A∗ = A∗∗.

Theorem 2.7. An operator A such that D(A) = H is essentially self-adjoint
iff there is one and only one self-adjoint extension of A.

The proof is not trivial and based on the theory of extension of symmetric
operators. It can be found, e.g., in [8].

2.3 Examples

We consider now a few examples.

Example 2.8. Let J be an interval of real line, not necessary finite and a(x)
a real valued measurable function which is finite almost everywhere. Let A
be the operator of multiplication by a(x) defined by

D(A) = {f ∈ L2(J) : af ∈ L2(J)},
(Af)(x) = a(x)f(x).

Then A is a self-adjoint operator. To verify this let us first prove thatD(A) =
L2(J). Let g ∈ L2(J) be a function such that

J

fgdx = 0 ∀f ∈ D(A).

We show that g = 0. With this aim, given N > 0 we consider the set

JN = {x ∈ J : |a(x)| < N}.

Since a(x) is finite almost everywhere, we have

meas(J \ ∪∞N=1JN ) = 0.

Hence, it suffices to prove that g|JN = 0 for all integer N . Let χN be the
characteristic function of JN , i.e. χN = 1 on JN and χN = 0 on J \ JN . For
every f ∈ L2(J) we set fN = χNf .
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Then, obviously, fN ∈ L2(J) and afN ∈ L2(J). Therefore, for all f ∈
L2(J) we have

JN

fgdx =
J

fNgdx = 0.

If we take here f = g, we get

JN

ggdx =
JN

|g|2dx = 0,

and, hence, g = 0 on JN .
Now, let g ∈ D(A∗), i.e. there exists g∗ ∈ L2(J) such that

J

afgdx =
J

fg∗dx ∀f ∈ D(A).

If we take as f an arbitrary function in L2(J) vanishing outside JN , we see as
above that ag = g∗ almost everywhere, i.e. g ∈ D(A). Hence, D(A∗) = D(A)
and A∗g = Ag, i.e. A = A∗.

To consider next examples we need some information on weak derivatives
(see, e.g., [6], [8]). Let f ∈ L2(J). Recall that a function g ∈ L2(J) is said
to be the weak derivative of f if

(2.3)
J

gϕdx = −
J

fϕ dx ∀ϕ ∈ C∞0 (J).

In this case we write g = f . For any integer m we set Hm(J) = {f ∈ L2(J) :
f (k) ∈ L2(J), k = 1, . . . ,m}. Endowed with the norm

f Hm = (
m

k=0

f (k) 2
L2)

1/2

this is a Hilbert space. One can prove that the expression

( f 2
L2 + f (m) 2

L2)
1/2

defines an equivalent norm in Hm. We have also to point out the following
properties:

(i) f ∈ Hm(J) iff f ∈ L2(J)∩C(J), is continuously differentiable up to or-
der m−1, f (m) exists almost everywhere, and f (m) ∈ L2(J). Moreover,
in this case all the functions f, f , . . . , f (m−1) are absolutely continuous.
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(ii) For f, g,∈ H1(J) the following formula (integration by parts) holds
true:

(2.4)
t2

t2

fg dx = f(t2)g(t2)−f(t1)g(t1)−
t2

t2

f gdx, t1, t2 ∈ J, t1 < t2

(iii) In the case of unbounded J, if f ∈ H1(J), then limx→∞ f(x) = 0.

Let us recall that a function f(x) is said to be absolutely continuous if, for
every > 0 there exists δ > 0 such that

|f(βj)− f(αj)| < ,

whenever (α1,β1), . . . , (αk, βk) is a finite family of intervals with (βj−αj) <
δ.

Example 2.9. Operator id/dx on real line. Define an operator B0 in the
following way:

D(B0) = C
∞
0 (R),

(B0f)(x) = i
df

dx
.

This operator is symmetric. Directly from definition of weak derivative we
see that D(B∗0) = H

1(R) and

(B∗0g)(x) = i
dg

dx
, g ∈ D(B∗0).

Moreover, properties (ii) and (iii) above imply that B∗0 is self-adjoint. Now
we prove that the closure B = B0 of B0 coincides with B

∗
0 . To end this it

suffices to show that for any f ∈ D(B∗0) = H1(R) there exists a sequence
fn ∈ C∞0 (R) such that fn → f in L2(R) and fn → f in L2(R), i.e. fn → f
in H1(R). This is well-known, but let us to explain briefly the proof. Choose
a function χn ∈ C∞0 (R) such that χn = 1 if |x| ≤ N , χN = 0 if |x| ≥ N + 1,
and |χN (x)| ≤ C (independently of N). Then cut off f : set fN = χnf . We
have fN → f in H1(R). So, we can assume that f = 0 outside a compact
set. Now choose an even function ϕ ∈ C∞0 (R) such that ϕ(x) ≥ 0, ϕ(x) = 0,
if |x| ≥ 1,

R
ϕ(x)dx = 1

and set ϕ (x) = −1ϕ(x/ ). Let

f (x) =
R
ϕ (x− y)f(y)dy.
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One can easily verify that f ∈ C∞0 (R) and (f ) = (f ) . From this one can
deduce that f → f in H1(R), i.e. f → f in L2(R) and f → f in L2(R).
Thus, B = B∗0 is a self-adjoint operator.

Remark 2.10. Let F be the Fourier transform

(Ff)(ξ) =
1

(2π)1/2 R
f(x)e−ixξdx.

It is well-known that F is a bounded operator in L2(R). Moreover, F is
a unitary operator, i.e. F has a bounded inverse operator F−1 defined on
L2(R) and

(Ff, Fg) = (f, g), ∀f, g ∈ L2(R).
In fact,

(F−1h)(x) =
1

(2π)1/2 R
h(ξ)eiξxdξ.

One can verify, that

(2.5) B = F−1AF.

In particular, FD(B) = D(A). Equation (2.5) means that the operators A
and B are unitary equivalent.

Example 2.11. Operator id/dx on a half-line. Let B0 be the operator id/ix
in L2(R+), where R+ = {x ∈ R : x > 0}, with D(B0) = C∞0 (R+). As in
Example 2.9, B∗0 is id/dx, with D(B

∗
0) = H

1(R+). On the other hand, B0 is
id/dx, with

D(B0) = {f ∈ H1(R+) : f(0) = 0} = H1
0 (R+).

Indeed, it is easy that D(B0) ⊂ H1
0 (R+). Now, a function f ∈ H1

0 (R+)
can be considered as a member of H1(R): extend f to the whole R by 0.
If we set f (x) = f(x − ), we see that f → f in H1(R+). Therefore, to
show that each f ∈ H1

0 (R+) belongs to D(B0), we can assume without loss
of generality that f vanishes in a neighborhood of 0. Now we may repeat the
same cut-off and averaging arguments as in Example 2.9. We also see that
B0 and B0 are symmetric operators. Since B0 = B

∗∗
0 = B∗0 = (B0)

∗, B0 is
not self-adjoint and B0 is not essentially self-adjoint. Moreover, B0 has no
self-adjoint extension at all. Indeed, if C is an extension of B0, then

D(B0) = H
1
0 (R+) ⊂ D(C) ⊂ D(B∗0) = H1(R+).

However,
dimH1(R+)/H1

0 (R+) = 1
(prove!) and, hence, D(C) = H1

0 (R+) or H1(R+). i.e. C = B0 or C = B∗0 .
Both these operators are not self-adjoint.
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Example 2.12. Operator −d2/dx2 on real line. Consider an operator H0 in
L2(R) defined as −d2/dx2, with D(H0) = C∞0 (R). Then H∗

0 is −d2/dx2, with
D(H∗

0 ) = H2(R). Moreover, H = H0 = H∗
0 is a self-adjoint operator, and

H0 is essentially self-adjoint. This can be shown, basically, along the same
lines as in Example 2.9.

Example 2.13. Operator −d2/dx2 on a half-line. Let H0,min be −d2/dx2,
with D(H0,min) = C

∞
0 (R+). This operator is symmetric. (H0,min)∗ = Hmax is

just −d2/dx2, with the domain H2(R+), while Hmin = H0,min is the operator
−d2/dx2, with the domain

D(Hmin) = H
2
0 (R+) = {f ∈ H2(R+) : f(0) = f (0) = 0}.

[We use such notation, since Hmin is the minimal closed operator gen-
erated by −d2/dx2, while Hmax is the maximal one]. Hmin is a symmetric
operator. Now we define H0 as −d2/dx2, with the domain D(H0) consisting
of all functions f ∈ C2(R+) such that f(0) = 0 and f(x) = 0 for x sufficiently
large. Prove that

D(H∗
0 ) = {f ∈ H2(R+) : f(0) = 0}

H∗f =
d2f

dx2
, f ∈ D(H∗

0 ).

Moreover, H∗
0 is self-adjoint andH = H0 = H

∗
0 . Therefore, H is a self-adjoint

operator and H0 essentially self-adjoint.
Certainly, Hmin ⊂ H ⊂ Hmax, and the next problem is to find all self-

adjoint extensions of Hmin. It turns out to be (this is an exercise) that every
self-adjoint extension of Hmin is of the form H(ζ), ζ = e

iϕ ∈ C, where
D(H(ζ)) = {f ∈ H2(R+) : cosϕ · f(0) + sinϕ · f (0) = 0},
H(ζ)f = −d

2f

dx
, f ∈ D(H(ζ)).

Hint: the domain of any such extension lies betweenH2
0 (R+) andH1(R+).

On the other hand, the rule f → {f(0), f (0)} defines an isomorphism of
H2(R+)/H2

0 (R+) onto C2. This means that all such extensions form, or are
parametrized by, the unit circle in C.

Example 2.14. Let us define an operator B0 in L
2(0, 1) as id/dx, with

D(B0) = H
1
0 (0, 1) = {f ∈ H1(0, 1) : f(0) = f(1) = 0}.

Then B0 is symmetric and B
∗
0 is again id/dx with D(B

∗
0) = H

1(0, 1). Every
self-adjoint extension of B0 is of the form B(ζ), ζ ∈ C, |ζ| = 1, where

D(B(ζ)) = {f ∈ H1(0, 1) : f(1) = eiϕf(0)},
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and B(ζ) = id/dx on this domain. All such extensions again form the unit
circle in C.

Example 2.15. Let H be the operator −d2/dx2 in L2(0, 1), with
D(H) = H2(0, 1) ∩H1

0 (0, 1) = {f ∈ H2(0, 1) : f(0) = f(1) = 0}.
This operator is self-adjoint (prove!)

2.4 Resolvent

Let A : H → H be a linear operator. We say that z ∈ C belongs to the
resolvent set of A if there exists the operator Rz = (A − zI)−1 which is
bounded and D(Rz) = H. The operator function Rz is called the resolvent
of A. The complement of the resolvent set is called the spectrum, σ(A), of
A.
If A is a closed operator, and z ∈ σ(A), then D(Rz) = H, since Rz is

closed. One can verify that the resolvent set is open. Hence, σ(A) is closed.
Moreover, Rz is an analytic operator function of z on the resolvent set.

Remark 2.16. There are various equivalent definitions of analytic operator
functions. The simplest one is the following. An operator valued function
B(z) defined on an open subset of C is said to be analytic if each its value is a
bounded operator and for every f, g ∈ H a scalar valued function (B(z)f, g)
is analytic.

For z, z ∈ C \ σ(A), the following Hilbert identity
(2.6) Rz −Rz = (z − z )RzRz
holds true.

Proof.
Rz −Rz = Rz(A− z I)Rz −Rz

= Rz[(A− zI) + (z − z )I]Rz −Rz
= [I + (z − z )Rz]Rz −Rz
= (z − z )RzRz .

Let us introduce the following notations:

C+ = {z ∈ C : Imz > 0}
C− = {z ∈ C : Imz < 0}.

We have C = C+ ∪ R ∪ C−, where R is considered as the real axis.
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Proposition 2.17. Suppose A to be a self-adjoint operator. The σ(A) ⊂ R
and the resolvent set contains both C+ and C−. If z ∈ C+∪C−, then R∗z = Rz.
Moreover,

(2.7) Rz ≤ |Imz|−1.
Proof. Let us calculate (A − zI)f 2, where f ∈ D(A), z = x + iy, y = 0.
We have

(A− zI)f 2 = ((A− zI)f, (A− zI)f)
= ((A− xI)f − iyf, (A− xI)f − iyf)
= (A− xI)f 2 + y2 f 2.

This implies that
(A− zI)f 2 ≥ y2 f 2.

From the last inequality it follows that (A − zI) has a bounded inverse
operator and

(A− zI)−1 ≤ 1/|y|.
Now let us prove that (A− Iz)−1 is everywhere defined. Indeed,
(2.8) (A− zI)∗ = A∗ − zI = A− zI.
Next,

[im(A− zI)l]⊥ = ker(A− zI) = {0}.
Hence, im(A − zI) = D((A − zI)−1) is dense in H. However, the operator
(A− zI)−1 is bounded and closed. Therefore, D((A− zI)−1) = H.
The identity R∗z = Rz follows from (2.6) and the identity (B−1)∗ =

(B∗)−1.

A self-adjoint operator A is said to be positive (resp. non-negative) if
there is a constant α > 0 such that

(Af, f) ≥ α f 2, ∀f ∈ D(A)
(resp., if (Af, f) ≥ 0 ∀f ∈ D(A)). In symbols A > 0 and A ≥ 0, respec-
tively.

Exercise 2.18. If A > 0 (resp., A ≥ 0), then σ(A) ⊂ (0,+∞) (resp.,
σ(A) ⊂ [0,+∞)).
Exercise 2.19. (i) For the operator H defined in Example 2.4 (or in Ex-

ample 2.5), prove that H ≥ 0.
(ii) Let H be the operator of Example 2.15. Prove that H > 0.

For more details we refer to [8] and [12].
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3 Spectral theorem of self-adjoint operators

3.1 Diagonalization of self-adjoint operators

In Example 2.1 we have shown that operators of multiplication by a measur-
able (almost everywhere finite) functions are self-adjoint. It was also pointed
out (Remark 2.1) that the self-adjoint operator in L2(R) generated by id/dx
is unitary equivalent to the operator of multiplication by the independent
variable x, i.e. it is essentially of the same form as in Example 2.1.
Let us now look at an extremely simple situation, the case when H is

finite dimensional, dimH = n < ∞. We recall that in this case each linear
operator is bounded and everywhere defined, provided it is densely defined.
If A is a self-adjoint operator in H, then, as it is well-known, there exists
a complete orthogonal system {e1, . . . , en} of normalized eigenvectors, with
corresponding eigenvalues λ1, . . . ,λn ∈ R. Denote be E a linear space of all
functions f : {1, . . . , n}→ C. Endowed with the natural inner product, E is
a Hilbert space. Denote by b(k) the function b(k) = λk, k = 1, . . . , n, and by
B the corresponding multiplication operator:

(Bf)(k) = b(k)f(k), k = 1, . . . , n.

It is easy that B is a self-adjoint operator in E . Let us also define an operator
U : H→ E , letting

(Uej)(k) = δjk, j, k = 1, . . . , n,

where δjk is the Kronecker symbol. It is a simple exercise that U is a unitary
operator and

A = U−1BU.

Therefore, each self-adjoint operator in an finite dimensional Hilbert space
is unitary equivalent to an operator of multiplication.
In fact, there is something similar for general self-adjoint operators. To

formulate corresponding result rigorously, let us recall some basic notions
from measure theory. A measure space is a triple (M,F , µ), where M is a
set, F is a σ-algebra of subsets of M , and µ : F → R ∪ {∞} is a measure
on M . Further, one says that a collection F of subsets is a σ-algebra if it is
closed with respect to complements and countable unions (hence, countable
intersections), and, in addition, ∅ ∈ F (hence, M ∈ F). A measure on M is
a nonnegative function on F , with values in R ∪ {∞}, which is σ-additive,
i.e.

µ(∪Xα) = µ(Xα),
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where {Xα} is at most countable family of mutually disjoint members of F .
Moreover, µ(∅) = 0. A real-valued function f on M is said to be measurable
if it is finite almost everywhere, i.e. outside a set of measure 0, and every
sublevel set

{m ∈M : f(m) ≤ λ},λ ∈ R0
is measurable, i.e. belongs to F . A complex valued function is measurable if
both its real and imaginary parts are measurable. On a measurable space one
develops integration theory, like Lebesgue’s theory. Particularly, the space
L2(M,dµ) is well-defined. This space consists of all complex valued functions
with square integrable modulus. Any two such functions are considered to
be equal if they may differ only on a set of measure 0. Endowed with the
natural inner product

(f, g) =
M

f(m)g(m)dµ(m),

L2(M,µ) becomes a Hilbert space.

Proposition 3.1. Let a(m) be a real-valued measurable function on M , A
an operator of multiplication by a(m) with

D(A) = {f ∈ L2(M, dµ) : a(m)f(m) ∈ L2(M,dµ)}.

Then A is a self-adjoint operator.

Proof. Repeat the arguments of Example 2.1

Now we formulate, without proof, the following

Theorem 3.2. Let A be a self-adjoint operator in a Hilbert space. Then there
exist a measure space M , with measure σ, a real-valued measurable function
a(m) on M , and a unitary operator U from H onto L2(M,σ) such that

(i) f ∈ D(A) iff f ∈ H and a(m)(Uf)(m) ∈ L2(M,σ);
(ii) for every f ∈ D(A) we have

(UAf)(m) = a(m)(Uf)(m).

This means that
A = U−1aU.
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See, e.g., [1], [8] and [12] for proofs.
In the case of separableH, one can chooseM , σ, and a(m) in the following

manner. The space M is a union of finite, or countable, number of straight
lines lj of the form

lj = {(x, y) ∈ R2 : y = j}.
On each such line it is given a monotone decreasing function σj having fi-
nite limits at +∞ and −∞. The function σj defines the Lebesgue-Stieltjes
measure dσj on lj. We always assume that σj is right-continuous, i.e. σj(k+
0, j) = σj(x, j). [For every interval ∆ = {(x, j) : α < x ≤ β} ⊂ lj we have
dσj(∆) = σj(β)− σj(α)]. By definition, a set B ⊂ M is measurable iff each
B ∩ lj is measurable, and in this case

dσ(B) = dσj(B ∩ lj).

The function a(m) is now

a(m) = x,m = (x, j).

We also have the following orthogonal direct decomposition

L2(M,σ) = ⊕L2(lj, dσj).

It must be pointed out that the measurable space (M, dσ) is not uniquely
determined and, therefore, is not an invariant of a self-adjoint operator.

Example 3.3. Consider again the operator of multiplication by x in L2(R).
It is not exactly of the form described after Theorem 3.1. To obtain that
one, we consider M = ∪lj and define σj by

σj(j, x) =


0 if x ≤ j
x− j if x ∈ [j, j + 1]
1 if x ≥ j + 1.

With respect to dσj, the sets (−∞, j] and [j + 1,+∞] in lj have measure 0.
Therefore, L2(lj, dσj) L2(j, j + 1). Now we see that

L2(R) ⊕L2(lj, dσj) ⊕L2(j, j + 1),

where the isomorphism is defined by f → {f |[j,j+1]}j∈Z. In both these spaces
our operator acts as multiplication by x.
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3.2 Spectral decomposition

Now we describe the so-called spectral decomposition of a self-adjoint op-
erator A. We start with a construction of corresponding decomposition of
identity. By Theorem 2.1, A = U−1aU , where U : H→ L2(Mσ) is a unitary
operator and a(m) is a real valued measurable function onM . Let us denote
by χλ = χλ(m) the characteristic function of the set

Mλ = {m ∈M : a(m) ≤ λ},
i.e. χλ = 1 on Mλ and χλ = 0 on M \Mλ. Define operators Eλ, λ ∈ R,
acting in H by

(3.1) Eλ = U
−1χλU.

Here and subsequently, we do not make notational distinction between func-
tion and corresponding operators of multiplication. All the operators Eλ are
bounded and Eλ ≤ 1. We collect certain properties of the family Eλ which
is called decomposition of identity. All these properties are unitary invariant,
and we can (and will) assume that A = a. Certainly, every time such unitary
invariance should be verified, but this is a simple thing.

Proposition 3.4. The operator Eλ is an orthogonal (=self-adjoint) projector

Proof. Since χλ is real valued, Eλ is self-adjoint. Since χ2λ = χλ, we have
E2λ = Eλ. Hence, Eλ is a projector. Being realized in L

2(M), Eλ projects
L2(M) onto a subspace of functions vanishing on M \Mλ along a subspace
of functions vanishing on Mλ. Each of these two subspaces is an orthogonal
complement to another one.

The next property is a kind of monotonicity of Eλ.

Proposition 3.5.

(i) EλEµ = EµEλ = Eλ if λ ≤ µ.
(ii) For every f ∈ H the function (Eλf, f) = Eλf

2 is monotone increas-
ing.

Proof. It is easily seen that χλχµ = χµχλ = χλ, λ ≤ µ. This proves (i).
Since Eλ = E

2
λ and Eλ is self-adjoint, (Eλf, f) = (E

2
λf, f) = (Eλf,Eλf) =

Eλf
2. Next,

χλf
2 =

Mλ

f(m)dσ(m),

and this formula trivially implies (ii).
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Proposition 3.6. Eλ is right-continuous (Eλ+0 = Eλ) in the strong operator
topology, i.e.

(3.2) lim
→0, >0

Eλ+ f − Eλf = 0.

Proof. Let us first prove (3.2) for f ∈ L, the space of bounded measurable
functions vanishing outside a set of finite measure. For such a function f let
S = {m : f(m) > 0} (this set has a finite measure). Now

Eλ+ f − Eλf
2 =

S

(χλ+ − χλ)
2|f |2dσ(m)

=
S∩(Mλ+ \Mλ)

|f |2dσ(m)

≤ Cσ((S ∩Mλ+ ) \ (S ∩Mλ)).

Since

k>0
k→0

(S ∩Mλ+ k
) = S ∩Mλ,

we have
limσ((S ∩Mλ+ ) \ (S ∩Mλ)) = 0.

Thus, for f ∈ L, (3.2) is proved. For f ∈ H, let us take fk ∈ L such that
δk = f − fk → 0. Then we have (recall that Eλ ≤ 1)

Eλ+ f − Eλf ≤ (Eλ+ − Eλ)fk + (Eλ+ − Eλ)(f − fk)
≤ (Eλ+ − Eλ)fk + Eλ+ (f − fk) + Eλ(f − fk)
≤ (Eλ+ − Eλ)fk fk + 2 f − fk = (Eλ+ − Eλ)fk + 2δk.

This is enough (let first → 0 and then k →∞).
Proposition 3.7. limλ→−∞Eλ = 0, limλ→+∞Eλ = I in the strong operator
topology.

Proof. Similar to that of Proposition 3.3.

Proposition 3.8. Let ∆ = (λ1,λ2)(λ1 < λ2) and E(∆) = Eλ2 − Eλ1. Then
E(∆)H ⊂ D(A), A[E(∆)H] ⊂ E(∆)H and

(3.3) λ1(f, f) ≤ (Af, f) ≤ λ2(f, f), f ∈ E(∆)H.
Moreover, for f ∈ E(∆)H
(3.4) (A− λI)f ≤ |λ2 − λ1| · |f |, λ ∈ ∆.
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Remark 3.9. The last inequality means that , for ∆ small, elements from
E(∆)H are almost eigenvectors of A, with an eigenvalue λ ∈ ∆. Certainly,
it is not trivial only in the case E(∆) = 0.

Proof. χλ2−χλ1 vanishes outsideMλ2 \Mλ1. On the last set a(m) is bounded
(pinched between λ1 and λ2). Hence (χλ2 − χλ1)f ∈ D(A) for every f ∈
L2(M). Next, f ∈ E(∆)H iff f = 0 outside Mλ2 \Mλ1, and we have easily

λ1
Mλ2

\Mλ1

|f |2dσ(m) ≤
Mλ2

\Mλ1

a(m)|f |2dσ(m)

≤ λ2
Mλ2

\Mλ1

|f |2dσ(m),

which implies (3.3). In a similar way one can prove (3.4).

Proposition 3.10. f ∈ D(A) if and only if
∞

−∞
λ2d(Eλf, f) =

∞

−∞
λ2d Eλf

2 <∞

Moreover, for f ∈ D(A) the last integral coincides with Af 2 and

(3.5) Af =
∞

−∞
λd(Eλf),

where the last integral is the limit in H

lim
α→−∞
β→+∞

β

α

λd(Eλf),

while the integral over a finite interval is the limit of its integral sums (in the
norm of H).
Proof. First, let us recall what does it mean

β

α

ϕ(λ)dθ(λ),

where ϕ is continuous, θ is monotone increasing and right-continuous. Given
a partition γ of (α, b] by points λ1 < λ2 < . . . < λn+1 = β (λ0 = α), we
choose ξi ∈ (λi,λi+1) and set

γ = max
i
(λi+1 − λi).
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Then
β

α

ϕ(λ)dθ(λ) = lim
|γ|→0

n

i=0

ϕ(ξi)[θ(λi+1)− θ(λi)].

We have

β

α

λ2d(Eλf, f) =
β

α

λ2d
M

xλ(m)f(m)f(m)dσ(m)

=
β

α

λ2d
Mλ

|f(m)|2dσ(m)

= lim
|γ|→0

ξ2i
Mλi+1

\Mλ1

|f(m)|2dσ(m)

= lim
|γ|→0 Mβ\Mα

h2γ(m)|f(m)|2dσ(m),

where hγ(m) = ξi on Mλi+1 \Mλi . Since

0 ≤ h2γ(m) ≤ max(α2,β2) = C,

then h2γ(m)|f(m)|2 is bounded above by an integrable function C|f(m)2| on
Mβ \Mα. Obviously, hγ(m)→ a(m) almost everywhere on Mβ \Mα. By the
dominated convergence theorem, we have

β

α

λ2d(Eλf, f) =
Mβ\Mα

a(m)2|f(m)|2dσ(m).

Passing to the limit as α→ −∞ and β → +∞, we get
∞

−∞
λ2d(Eλf, f) =

M

a(m)2|f(m)|2dσ(m) = Af 2.

Now an integral sum for the right-hand part of (3.5) is

ξi[χλi+1(m)− χλi(m)]f(m) = hγ(m)f(m),m ∈Mβ \Mα,

and vanishes outside Mβ \Mα. Hence,

M

|(χβ − χα)a(m)f(m)− (χβ − χα)hγ(m)f(m)|2dσ(m)

=
Mβ\Mα

|a(m)− hγ(m)|2|f(m)|2dσ(m).
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As above, we see that the last integral tends to 0. Therefore

(χβ − χα)af =
β

α

λd(Eλf).

Letting α→ −∞, β → +∞, we conclude.
A family Eλ satisfying the properties listed in Propositions 3.1 - 3.6 is

called a decomposition of identity corresponding to a given self-adjoint op-
erator A. We proved its existence. Remark without proof that given a
self-adjoint operator there is only one decomposition of identity.

3.3 Functional calculus

Let ϕ(λ),λ ∈ R, be a function which is measurable (and almost everywhere
finite) with respect to the measure d(Eλf, f) for each f ∈ H. LetM, dσ, a(m)
and U diagonalize A. Then ϕ(a(m)) is measurable. By definition,

ϕ(A) = U−1ϕ(a(m))U

Proposition 3.11.

D(ϕ(A)) = {f ∈ H :
∞

−∞
|ϕ(λ)|2d(Eλf, f) <∞).

Moreover, for every f ∈ D(ϕ(A)) and g ∈ H

(ϕ(A)f, g) =
∞

−∞
ϕ(λ)d(Eλf, g).

Since the proof makes use the same kind of arguments as in section 3.2,
we omit it. Due to this proposition, the operator ϕ(A) is well-defined: it
does not depend on a choice of M, dσ, a(m) and U . The following statement
is easy to prove by means of diagonalization.

Proposition 3.12.

(i) If ϕ(λ) is bounded, then ϕ(A) is a bounded operator.

(ii) If ϕ(λ) is real valued, then ϕ(A) is a self-adjoint operator.

(iii) If |ϕ(λ)| = 1, then ϕ(A) is a unitary operator.

(iv) ϕ1(A)ϕ2(A) = (ϕ1ϕ2)(A).
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Remark 3.13. If A is bounded, then (ϕ1 + ϕ2)(A) = ϕ1(A) + ϕ2(A). For
unbounded A the situation is more complicated. Take ϕ1(λ) = λ,ϕ2(λ) =
−λ. Then (ϕ1+ϕ2)(A) = 0, with the domain H, while ϕ1(A) +ϕ2(A) is the
same operator, but considered only on D(A) = H.
Proposition 3.14. λ0 ∈ R \ σ(A) if and only if Eλ does not depend on λ in
a neighborhood of λ0. In other words, σ(A) is exactly the set of increasing of
Eλ.

Proof. Let λ0 ∈ R \ σ(A). We know that the resolvent set is open and
Rλ depends continuously on λ. Therefore, there exists > 0 such that
(λ0 − ,λ0 + ) ∩ σ(A) = ∅ and Rλ ≤ C for |λ − λ0| < . (Pass to the
diagonalization M,a(m), . . .). Evidently, Rλ, if exists, must coincide with
multiplication by 1/(a(m)−λ). Recall now that the operator of multiplication
by, say, b(m) is bounded if b(m) is essentially bounded, and the norm of this
operator is exactly ess sup|b(m)|. Hence,

ess sup
1

|a(m)− λ| ≤ C,λ ∈ (λ0 − ,λ0 + ).

This implies directly that the set a−1(λ0− ,λ0+ ) is of measure 0. Therefore,
due to construction of Eλ, Eλ = const for λ ∈ (λ0 − ,λ0 + ). The converse
statement is almost trivial. If Eλ = const on (λ0 − ,λ0 + ], then χλ0+ −
χλ0− = 0 almost everywhere, i.e. a−1((λ0 − ,λ0 + ]) is of measure 0.
Therefore, 1/[a(m)− λ0] is essentially bounded.

Exercise 3.15. Let Eλ0−0 = Eλ0. Then there exists an eigenvector of A with
the eigenvalue λ0. If, in addition, Eλ = Eλ0−0 for λ0 − λ > 0 small enough,
and Eλ = Eλ0 for λ−λ0 > 0 small, then Pλ0 = Eλ0−Eλ0−0 is the orthogonal
projector onto the subspace of all eigenvectors with eigenvalue λ0.

Now let ϕ(λ) = ϕt(λ) = exp(itλ). Then, due to Proposition 3.12 Ut =
exp(itA) is a unitary operator. Moreover,

Ut+s = UtUs, t, s ∈ R,
U0 = I

Exercise 3.16. Prove that Ut is a strongly continuous family of operators,
i.e. for every f ∈ H the function Utf of t is continuous.

In other words, operators Ut form a strongly continuous group of unitary
operators.
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Exercise 3.17. The derivative

d

dt
(Utf)|t=0 = lim

t→0
1

t
(Utf − f)

exists if and only if f ∈ D(A). In this case the derivative is equal to iAf .
Exercise 3.18. Prove that for all t ∈ R

d

dt
Utf = iAUtf, f ∈ D(A).

The last means that Ut is the so-called evolution operator for the Schrö-
dinger equation

du

dt
= iAu,

since, for f ∈ D(A), the function u(t) = Utf is a solution of the last equation
with the Cauchy data u(0) = f .
Remarkably, that the famous Stone theorem states: if Ut is a strongly

continuous group of unitary operators, then there exists a self-adjoint oper-
ator A such that Ut = exp(itA). The operator A is called the generator of
Ut.

Exercise 3.19. In L2(R) consider a family of operators Ut defined by

(Utf)(x) = f(x− t), f ∈ L2(R).
Prove that Ut is a strongly continuous group of unitary operators and find
its generator.

3.4 Classification of spectrum

Let dσ be a finite Lebesgue-Stieltjes measure generated by a bounded mono-
tone increasing function σ. Then [11] it may be decomposed as

(3.6) dσ = dσac + dσsc + dσp,

where dσac is absolutely continuous with respect to the Lebesgue measure,
dσsc is purely singular, i.e. its support has Lebesgue measure 0 and at the
same time dσsc has no points of positive measure, and dσp is a purely point
measure. The last means that there are countably many atoms (points of
positive measure with respect to dσp) and the measure of any set is equal
to the sum of measures of atoms contained in this set. On the level of
distribution function σ, we have

σ = σac + σsc + σp.
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Here σac is a monotone absolutely continuous function, σsc is a monotone con-
tinuous function, whose derivative vanishes almost everywhere with respect
to the Lebesgue measure, and σp is a function of jumps:

σp(x) =
xj<x

αj,

where {xj} a countable set of points, αj > 0 and αj <∞.
Now we introduce the following subspaces:

Hp = {f ∈ H : d(Eλf, f) is a purely point measure} ,
Hac = {f ∈ H : d(Eλf, f) is absolutely continuous} ,
Hsc = {f ∈ H : d(Eλf, f) is purely singular} .

It turns out that these subspaces are orthogonal, invariant with respect to A
and

H = Hp ⊕Hac ⊕Hsc.

The spectra of the parts of A in the spaces Hp, Hac and Hsc are called pure
point spectrum σp(A), absolutely continuous spectrum σac(A) and singular
spectrum σsc(A), respectively. If, for example, Hsc = {0}, we say that A has
no singular spectrum and write σsc(A) = ∅, etc. See [8], [1] for details.
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4 Compact operators and the Hilbert-Schmidt

theorem

4.1 Preliminaries

First, let us recall several properties of bounded operators. The set L(H)
of all bounded operators is a Banach space with respect to the operator
norm A . In L(H) there is an additional operation, the multiplication of
operators, such that

AB ≤ A B .

Another way to express this is to say that L(H) is a Banach algebra (not
commutative!). Moreover, passage to the adjoint operator, A → A∗, is an
anti-linear involution (A∗∗ = A) and

A∗ = A

(prove this). In other words, L(H) is a Banach algebra with involution. Even
more, we have

AA∗ = A 2

(prove this) and this means that L(H) is a C∗-algebra. We summarize these
facts here, since later on we will deal with particular subsets of L(H) which
are (two-side) ideals.

Proposition 4.1. Let A ∈ L(H) be a self-adjoint operator. Then
A = sup

f =1

|(Af, f)|.

Proof. Let m = sup f =1|(Af, f)|. Clearly,

|(Af, f)| ≤ Af f ≤ A f 2

and, hence, m ≤ A . To prove the opposite inequality, note that

(A(f + g), f + g)− (A(f − g), f − g) = 4Re(Af, g).
Therefore,

Re(Af, g) ≤ 1
4
m( f + g 2 + f − g 2) =

1

2
m( f 2 + g 2).

Assuming that f = 1, take here g = Af/ Af . We get Af =
Re(Af, g) ≤ m. Hence A ≤ m.
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4.2 Compact operators

An operator A ∈ L(H) is said to be compact if for any bounded sequence
{fk} ⊂ H the sequence {Afk} contains a convergent subsequence. The set
of all such operators is denoted by S(H) (more natural would be S∞(H),
as we will see later on). Obviously, the sum of two compact operators is a
compact operator. Moreover, if A ∈ L(H) and B ∈ S(H), then AB ∈ S(H)
and BA ∈ S(H). Thus, S(H) is a two-side ideal in L(H). If dimH < ∞,
all linear operators in H are compact. It is not so if dimH = ∞. For
example, the identity operator I is not compact. As consequence, we see
that a compact operator cannot have a bounded inverse operator.

Theorem 4.2. If A ∈ S(H), then A∗ ∈ S(H).
Proof. Let B be the unit ball in H. Then its image M = A(B) is compact.
Consider the set of functions F = {ϕ : ϕ(x) = (x, y), y ∈ B} defined on M ,
i.e. here x ∈ M . F is a subset in C(M), the spaces of continuous functions
on M . The set F is bounded, since

|ϕ(x)| ≤ x · y ≤ x , x ∈M,
and M is bounded. Moreover, F is equicontinuous, since ϕ(x) − ϕ(x ) ≤
x− x . By the Arzela theorem, F is a compact subset of C(M).
Now, for any > 0 there exists a finite number of functions ϕ1(x) =

(x, y1), . . . ,ϕN(x) = (x, yN) with the following property. For any ϕ ∈ F , we
have |ϕ(x)− ϕj(x)| ≤ for some j and all x ∈ M . This means that for any
y ∈ B there exists an element yj such that

|(Ax, y − yj)| ≤ ∀x ∈ B,
or

|(x,A∗y −A∗yj)| ≤ ∀x ∈ B.
The last means that

A∗y −A∗yj ≤ .

Since is arbitrary, the closure of A∗(B) is compact (A∗(B) is precompact)
and the proof is complete.

Theorem 4.2 means that the ideal S(H) is invariant with respect to the
involution, or *-ideal.
Now let us point out that any finite dimensional operator A, i.e. a

bounded operator whose image imA is a finite dimensional subspace of H,
is obviously a compact operator. The set S0(H) of all finite dimensional
operators is a two-side *-ideal (not closed!).
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Exercise 4.3. Prove the last statement.

Theorem 4.4. S(H) is closed. Moreover, S(H) is the closure of S0(H).
Proof. Assume that Ak ∈ S(H) and Ak → A. Let {fj} be a bounded
sequence in H. Then {A1fj} contains a convergent subsequence {A1f (1)j },
the sequence {A2f (1)j } contains a convergent subsequence {A2f (2)j }, etc. Let
yj = f

(j)
j be the diagonal sequence. Certainly, {Akfj} is convergent for each

k. One can prove that {Ayj} is convergent.
Now let A ∈ S(H). For arbitrarily chosen orthogonal basis {ek}, denote

by Pk the orthogonal projector onto the subspace spanned on {e1, . . . , ek}.
Then PkA is a finite dimensional operator and PkA→ A in L(H).
Exercise 4.5. Complete the proof of Theorem 4.4.

4.3 The Hilbert-Schmidt theorem

Now we will clarify spectral properties of compact self-adjoint operators.

Proposition 4.6. A compact self-adjoint operator has at least one eigen-
value.

Proof. Assume A = 0 (otherwise the assertion is trivial). Then

m = sup
f =1

|(Af, f)| = 0.

For definiteness, assume that

m = sup
f =1

(Af, f).

There exists a sequence {fk} such that fk = 1 and

(Afk, fk)→ m.

Since A is compact, we can assume that Afk → g. By Proposition 4.1,
m = A and

Afk − fk = Afk
2 − 2m(Afk, fk) +m2

≤ A 2 − 2m(Afk, fk) +m2 = 2(m2 −m(Afk, fk))
The right-hand side here tends to 0, hence, Afk − mfk → 0. Therefore,
fk → g/m = f0 and f0 = 1. Evidently, Af0 = mf0.
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Proposition 4.7. Let A be a compact self-adjoint operator. For any r > 0
there is at most a finite number of linearly independent eigenvectors, with
eigenvalues outside of [−r, r]. In particular, each eigenspace with nonzero
eigenvalue is finite dimensional.

Proof. Assume there is an infinite sequence of mutually orthogonal eigenvec-
tors fk, fk = 1, with eigenvalues λk, |λk| > r. The sequence gk = fk/λk is
bounded and therefore the sequence Agk contains a convergent subsequence.
However, the last is impossible, since Agk = fk and fk−fj =

√
2, j = k.

The next result is known as the Hilbert-Schmidt theorem.

Theorem 4.8. Let A be a compact self-adjoint operator. Then there exists
an orthogonal system {ek} of eigenvectors, with nonzero eigenvalues {λk},
such that each vector f ∈ H has a unique representation of the form

f =
∞

k=1

ckek + f0,

where f0 ∈ kerA. Moreover,
Af =

k

ckλkek

and λk → 0, provided the system {ek} is infinite.
Proof. By proposition 4.6, there exists an eigenvector e1 with the eigenvalue
λ = ±m1 = ±m (in terms of Proposition 4.6). Let X1 be the 1-dimensional
subspace generated by e1 and H = X⊥1 . It is not difficult to see that AH1 ⊂
H1. If A|H1 = 0, the proof is complete. Otherwise, there exists e2 ∈ H2 such
that e2 = 1, Ae2 = ±m2e2, where

m2 = sup
f =1,f∈H1

|(Af, f)|.

And so on.

Thus, for a self-adjoint compact operator A any non-zero point λ ∈ σ(A)
is an eigenvalue. Certainly, 0 ∈ σ(A) and may be not an eigenvalue. Let Pλj

be an orthogonal projector onto the eigenspace with eigenvalue λj. Then for
the corresponding decomposition of identity, we have

Eλ =
λj<λ

Pλj .

Let us remark that a non self-adjoint compact operator in an infinite dimen-
sional Hilbert space may have no eigenvalues. In the case of finite dimensions
any operator has an eigenvalue.
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Exercise 4.9. Let 2 be the Hilbert space of all sequences x = {xk} such
that

x = (
∞

k=1

|xk|2)1/2.

The operator A is defined by Ax = y, where y1 = 0, yk = 2−kxk−1, k =
2, 3, . . .. Then A is compact, but has no eigenvalues. In fact, σ(A) = {0}.
Example 4.10. In L2(0, 1) let us consider an operator A defined by

(Af)(x) =
x

0

f(t)dt.

This operator is compact, σ(A) = {0} and there are no eigenvalues.
Compact operators with σ(A) = {0} are commonly known as Volterra

operators.

4.4 Hilbert-Schmidt operators

An operator K ∈ L(H) is called a Hilbert-Schmidt operator if for some
orthonormal basis {ek} the following norm
(4.1) K 2 = ( Kek

2)1/2

is finite. The set of all Hilbert-Schmidt operators is denoted by S2(H). Cer-
tainly, one has to prove that this notion is well-defined.

Proposition 4.11. If the quantity (4.1) is finite for some orthonormal basis,
than same is for every orthonormal basis and K 2 is independent on the
choice of basis. If K ∈ S2(H), then K∗ ∈ S2(H) and
(4.2) K∗

2 = K .

Moreover,

(4.3) K ≤ K 2

Proof. Inequality (4.3) follows immediately: if

f = fkek,

then

Kf 2 = fkKek
2 ≤ ( |fk| Kek )2

≤ |fk|2 Kek
2 = K 2

2 f
2.
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Now let {ek} be an orthonormal basis (perhaps, the same as {ek}). We have

Kek
2 = |(Kek, ej)|2

Hence,

(4.4)
k

Kek
2 =

k,j

|(ek,K∗ej)| =
j

K∗ej
2

This implies (4.2) and independence of K 2 on the basis.

Proposition 4.12. Every Hilbert-Schmidt operator is a compact operator,
i. e. S2(H) ⊂ S(H).
Proof. We have

Kf = (f, ek)Kek.

Set

KNf =
N

k=1

(f, ek)Kek.

Then

K −KN
2 ≤ K −KN

2
2 ≤

∞

k=N+1

Ken
2 → 0.

Proposition 4.13. Let K be a compact self-adjoint operator. K ∈ S2(H) iff

λ2k <∞,

where {λk} are all nonzero eigenvalues of K, counting multiplicity.
Proof. Obvious.

Now we want to study Hilbert-Schmidt operators in the space L2(M,dσ)
(for simplicity, one can think that M is an open subset of Rn, and dσ is the
Lebesgue measure, or a Lebesgue-Stieltjes measure).

Proposition 4.14. Let K be a bounded linear operator in L2(M, dσ). K is
a Hilbert-Schmidt operator iff there exists a function

K(m2,m1) ∈ L2(M ×M,dσ × dσ)

41



(the kernel function of K) such that

(4.5) (Kf)(m2) =
M1

K(m2,m1)f(m1)dσ(m1).

The function K is uniquely defined, up to a set of dσ × dσ-measure 0 and

(4.6) K 2
2 = |K(m2,m1)|2dσ(m2)dσ(m1).

Proof. Let {ek} be an orthonormal basis in L2(M,dσ) (for simplicity we
assume that L2(M,dσ) is separable) and K ∈ S2(L2(M, dσ)). We have

(4.7) Kf = K
k

(f, ek)ek =
k

(f, ek)Kek =
k,j

(Kek, ej)(f, ek)ej.

By (4.4),

K 2
2 =

k,j

|(Kek, ej)|2.

The functions {ek(m2)ej(m1)} form an orthonormal basis in L2(M×M, dσ×
dσ) (check this). Now we set

(4.8) K(m2,m1) = (Kek, ej)ej(m2)ek(m1).

Then K ∈ L2(M ×M,dσ × dσ) and

K 2
L2(M×M) = |(Kek, fj)|2 = K 2

2.

Equation (4.5) follows directly from (4.7).
Now let K is defined by (4.5), with K ∈ L2(M ×M) Then

(4.9) K(m2,m1) =
k,j

ckjfj(m2)ek(m1),

where |ekj |2 <∞. By (4.4),

K 2
2 = |ckj|2,

since Kek = j ckjej.

Exercise 4.15. Prove uniqueness of K.
Exercise 4.16. Prove that S2(H) is a two-side ideal in L(H) (not closed!).
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4.5 Nuclear operators

First, we introduce an inner product on S2(H), so that S2(H) becomes a
Hilbert space. Set

(4.10) (K,L)2 = (Kek, Lek), K, L ∈ S2(H),
where {ek} is an orthonormal basis. Certainly, this inner product induces
the norm in S2(H) defined above.
An operator A ∈ L(H) is said to be nuclear if it can be written in the

form

(4.11) A =
N

i=1

BjCj, Bj, Cj ∈ S2(H),

where N depends on A. We denote the set of all such operators by S1(H).
One can verify that S1(H) is a two-side ideal in L(H) (not closed), and
S1(H) ⊂ S2(H). In algebraic terms, S1(H) is the square of the ideal S2(H) :
S1(H) = S2(H)2.
Proposition 4.17. Let A ∈ S1(H) and {ek} an orthonormal basis. Then
(4.12) |(Aek, ek)| <∞
and

(4.13) trA = (Aek, ek),

the trace of A, is independent on the choice of {ek}. The trace of A is a
linear functional on S1(H) such that trA ≥ 0 for A ≥ 0 and
(4.14) trA∗ = trA.

Moreover,

(4.15) (K,L)2 = tr(L
∗K),K, L ∈ S2(H).

Proof. Using (4.11), we have

(Aek, ek) =
N

j=1

(BjCjek, ek) =
N

j=1

(Cjek, Bj
∗ek),

which implies (4.12) and the following equation

k

(Aek, ek) =
N

j=1

(Cj, B
∗
j )2.

Hence trA does not depend on the choice of basis. Nonnegativity of trA and
(4.14), (4.15) are evident.
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Proposition 4.18. Let A be a self-adjoint compact operator and λ1,λ2, . . .
all its nonzero eigenvalues (counting multiplicity). A ∈ S1(H) iff
(4.16) |λj| <∞.
Moreover,

(4.17) trA = λj

Proof. Let A ∈ S1(H). Choosing as {ek} the eigenbasis (it exists!), we get
(4.16) and (4.17). Conversely, assume (4.16). Let {ek} be the eigenbasis of
A, i.e. Aek = λkek. Define the operators B and C by

Bek = |λk|1/2ek,
Cek = λk|λk|−1/2ek.

We have B,C ∈ S2(H) and A = BC. Hence A ∈ S1(H).
The next statement is, perhaps, the most important property of trace.

Proposition 4.19. If A ∈ S1(H) and B ∈ L(H), then
(4.18) tr(AB) = tr(BA).

Lemma 4.20. Every operator B ∈ L(H) is a linear combination of four
unitary operators.

Proof. We have
B = B1 + iB2,

where
B1 = B

∗
1 = (B +B

∗)/2, B2 = B
∗
2 = (B −B∗)/2i.

Hence, we need to prove that each self-adjoint operator B is a linear combi-
nation of two unitary operators. In addition, we may assume that B ≤ 1.
Now

B =
1

2
(B + i

√
I −B2) + 1

2
(B − i

√
I −B2).

To verify that B± i√I −B2 is a unitary operator one can use the functional
calculus.

Proof of Proposition 4.19. Due to the Lemma, we can assume that B is a
unitary operator. In this case the operators AB and BA are unitary equiv-
alent:

AB = B−1(BA)B

However, unitary equivalent nuclear operators have the same trace, since
trace does not depend on the choice of basis.
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4.6 A step apart: polar decomposition

An operator U ∈ L(H) is said to be partially isometric if it maps isometrically
(kerU)⊥ onto imU , i. e. Uf = f for f ∈ (kerU)⊥. Remark that in this
case imU is a closed subspace of H. As consequence,
(4.19) U ∗U = E, UU ∗ = F,

where E is the orthogonal projector onto (kerU)⊥ and F the orthogonal
projector onto imU . Certainly, if kerU = {0} and imU = H, then U is a
unitary operator.

Exercise 4.21. Prove (4.19).

Let A ∈ L(H). If
(4.20) A = US,

where S ∈ L(H), S∗ = S, S ≥ 0, and U is a partially isometric operator
with

(4.21) kerU = kerS = (imS)⊥,

we say that (4.20) is a polar decomposition of A. In the case H = C, we
have L(H) = C and polar decomposition is exactly the representation of a
complex number in the form r exp(iθ).

Proposition 4.22. For each bounded linear operator there exists a unique
polar decomposition.

Proof. Assume that (4.20) is a polar decomposition. Then A∗ = SU ∗. Hence

A∗A = SU ∗US = SES.

Due to (4.21), ES = S. Therefore,

(4.22) A∗A = S2

which implies

(4.23) S =
√
A∗A.

Due to (4.20), the operator U is uniquely determined on imS, hence, on
imS. Since, by (4.21),

kerU = (imS)⊥ = (imS)⊥,
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the operator U is unique.
To prove existence, we first define S by (4.23). Here A∗A is a nonnegative

self-adjoint operator and the square root exists due to functional calculus.
Now we define U letting

Uf = 0 , f ∈ (imS)⊥ = (imS)⊥
Uf = Ag , f = Sg ∈ imS.

Equation (4.22) implies immediately that if Sg = 0, then Ag = 0. Therefore,
U is well-defined on imS⊕(imS)⊥ which is, in general, only a dense subspace
of H (imS ⊕ (imS)⊥ = H!). However, (4.22) implies

Sg 2 = (Sg, Sg) = (S2g, g) = (A∗Ag, g) = (Ag,Ag) = Ag 2,

i.e. Uf = f for f ∈ imS. Hence, S is bounded and, by continuity, can
be extended to a (unique) partially isometric operator on whole H.
For A ∈ L(H) we denote by |A| the operator S from the polar decompo-

sition of A (|A| = √A∗A).
Proposition 4.23. Let J be a left ideal of L(H). Then A ∈ J if |A| ∈ J .
Proof. Obvious, due to formulas A = U |A|, U ∗A = |A|.
As consequence, A ∈ S(H) (resp. S1(H), S2(H)) if and only if |A| ∈ S(H)

(resp., S1(H), S2(H).

4.7 Nuclear operators II

Proposition 4.24. If A,B ∈ S2(H), then
tr(AB) = tr(BA).

Proof. We have the following identities:

4AB∗ = (AB) + (AB)∗ − (A−B)(A−B)∗
+ i(A+ iB)(A+ iB)∗ − i(A− iB)(A− iB)∗,

4B∗A = (AB)∗ + (AB)− (A−B)∗(A−B)
+ i(A+ iB)∗(A+ iB)− i(A− iB)∗(A− iB).

This implies that we need only to prove that

tr(AA∗) = tr(A∗A), A ∈ S2(H).
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From the polar decomposition A = US we get S = U∗A. Since A ∈ S2(H),
this implies that S ∈ S2(H). However, A∗ = S2 and, by Proposition 4.9,

tr(AA∗) = tr(US2U∗) = tr(U∗US2) = tr(S2) = tr(A∗A).

(Here we have used U∗U = E and ES = S).

Now we introduce the so-called nuclear norm. Let A ∈ S2(H) and A =
U |A| its polar decomposition. Set

A 1 = tr|A|

We collect main properties of nuclear norm.

Proposition 4.25. We have

A 2 ≤ A 1, A ∈ S1(H);(4.24)

BA 1 ≤ B · A1, A ∈ S1(H), B ∈ L(H);(4.25)

AB 1 ≤ A 1 B , A ∈ S1(H), B ∈ L(H);(4.26)

BA 1 ≤ B 2 A 2, A,B ∈ S2(H);(4.27)

|trA| ≤ A 1, A ∈ S1(H);(4.28)

A∗ 1 = A 1, A ∈ S1(H);(4.29)

A 1 = sup
B∈L(H)
B ≤1

|tr(BA)|, A ∈ S1(H).(4.30)

(In (4.30) one can replace B ∈ L(H) by B ∈ S0(H), the set of finite dimen-
sional operators).

Proof.

1) Prove (4.24). Let S = |A|. Then

A 1 = S 1 = trS,

A 2
2 = trA

∗A = trS2,

and (4.24) reduces to the inequality

trS2 ≤ (trS)2.

The last inequality becomes easy if we write down trS2 and trS by
means of the eigenbasis of S.

47



2) To prove (4.29), remark that A∗ = SU∗, AA∗ = US2U∗ and |A∗| =
USU ∗. Hence

tr|A∗| = tr(USU∗) = tr(U∗US) = trS = tr|A|.

3) Let us prove (4.28). Let {ek} be an orthonormal eigenbasis of S, {sk}
the set of corresponding eigenvalues:

Sek = skek.

Then
trA =

k

(USek, ek) =
k

Sk(Uek, ek).

However, |(Uek, ek)| ≤ 1 and, therefore,

|trA| ≤ sk = tr s = A 1.

4) To prove (4.25), consider the polar decomposition BA = V T of BA.
We have

BA 1 = trT = tr(V
∗BA) = tr(V ∗BUS).

However, V ∗BU ≤ B and we can use the argument of step 3.

5) Proof of (4.27). As on step 4, we have

BA 1 = tr(V
∗BA) = tr((B∗V )∗A) = (A,B∗V )2
≤ A 2 B

∗V 2 ≤ A 2 B
∗
2 V ≤ A 2 B 2.

6) Due to (4.29), estimate (4.26) follows from (4.25).

7) We have
|tr(BA)| ≤ BA 1 ≤ B A 1.

In fact, here we have equality if B = U ∗ and this implies (4.30). Now let
B = Bn = PnU

∗, where
Pn = E((1/n,+∞))

is the spectral projector of S. We have

lim BnA 1 = lim tr(PnS) = trA = A 1.
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Proposition 4.26. S1(H) is a Banach space with respect to the nuclear
norm.

Proof.

1) Let us verify the standard properties norm

A +A 1 ≤ A 1 + A 1,

λA 1 = |λ| A 1,

A 1 = 0 iff A = 0.

Only the first one is nontrivial an we consider it now. Using (4.30), we
get

A +A 1 ≤ sup
B ≤1

|tr(B(A +A ))|

= sup
B ≤1

|tr(BA ) + tr(BA )|

≤ sup
B ≤1

(|trBA |+ |trBA |)

≤ sup
B ≤1

|tr(BA )|+ sup
B ≤1

|tr(BA )|

= A 2 + A 2.

2) Now we want to prove the completeness. Let An ∈ S1(H) and
An −Am 1 → 0

as m,n → ∞. By (4.24), An − Am 2 → 0. Hence, there exists
A ∈ S2(H) such that
(4.31) lim An −A 2 = 0

We prove that A ∈ S1(H). Let A = US be the polar decomposition of
A and Sn = U

∗An. It is clear that

(4.32) lim Sn − S 2 = 0,

(4.33) lim Sn − Sm 1 = 0.

Let {ek} be an orthonormal eigenbasis of S, with corresponding eigen-
values sk. Equation (4.31) implies that

(4.34) sk = (Sek, ek) = lim(Snek, ek).
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To verify that A ∈ S1(H), is suffices to show that

sk <∞.

However, (4.30) implies easily that

k

|(Sek, ek)| ≤ S 1, S ∈ S1(H).

Hence,

sup
n

k

|(Snek, ek)| <∞

and this implies the required due to (4.34).

Now it remains to show that

lim An −A 1 = 0.

Let > 0. Choose N > 0 such that

Am −An 1 ≤ , m, n ≥ N
and prove that

An − A 1 ≤ , n ≥ N.
Indeed, (4.27) and (4.31) imply that for each finite dimensional B ∈
L(H)

lim tr(BAm) = tr(BA)

Therefore,

|tr[B(An −A)]| = lim
m
|tr[B(An − Am)]| ≤ , n ≥ N,

provided B ≤ 1. We conclude using the last remark of Proposition
4.13.

4.8 Trace and kernel function

Now let K be a nuclear operator in L2(X). We know that K is a Hilbert-
Schmidt operator and, therefore, has a kernel K(x, y):

Ku(x) = K(x, y)u(y)dy.
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Two questions arise: how to express trK in terms of its kernel function K.
And which kernel functions generate nuclear operators? The first question is
answered by the formula

(4.35) trK = K(x, x)dx.

Certainly, since K is only measurable, the meaning of the right-hand side
here is not so clear. It may be clarified, but we will not do this here. Instead,
let us explain why formula (4.35) is natural.
First we have

K = K1 + iK2,

where

K1 =
1

2
(K +K∗),K2 =

1

2i
(K −K∗)

are self-adjoint nuclear operators. Hence, we can assume that K is self-
adjoint. Let {ek} be an eigenbasis of K and {λk} the set of eigenvalues.
Then {ek(x)e (y)} is a basis in L2(X×X). Therefore, we have an expansion

K(x, y) =
k

λkek(x)ek(y)

(verify it). Letting x = y and integrating, we get formally (4.35). Certainly,
this is not a rigorous argument!
Now let us formulate the following

Proposition 4.27. Let K be an integral operator in L2(X), where X is a
domain in Rn, and K its kernel function. Assume that K(x, y) is continuous
and K ≥ 0. Then K is nuclear if an only if the right-hand side of (4.35) is
finite. Moreover, trK is expressed by (4.35).

Certainly, there are various situations in which (4.35) can be justified.
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5 Perturbation of discrete spectrum

5.1 Introductory examples

Here we discuss formally how to find eigenvalues of perturbation of a given
self-adjoint operator. We start with generic situation, the case of simple
eigenvalues.

Example 5.1. Let A0 and B be two self-adjoint operators in H. For sim-
plicity we assume A0 and B to be bounded. One can even assume that the
space H is finite dimensional. Consider a perturbed operator

A = A0 + B.

Let λ0 be a simple eigenvalue of A0, with corresponding eigenvector e0,
e0 = 1. We look for an eigenvalue λe of A in a neighborhood of λ0. It is
natural to use power series expansions

(5.1) λ = λ0 + λ1 +
2λ2 + . . . ,

(5.2) e = e0 + e1 +
2e2 + . . . .

Substituting (5.1) and (5.2) into the eigenvalue equation

(5.3) (A0 + B)e = λ e ,

and comparing equal powers of , we obtain the following sequence of equa-
tions:

(5.4) A0e0 = λ0e0,

(5.5) A0e1 − λ0e1 = λ1e0 −Be0,

(5.6) A0e2 − λ0e2 = λ2e0 + λ1e1 −Be1,
etc. To determine an eigenvector uniquely we have to normalize it. The
natural normalization is (e , e0) = 1 which implies (ek, e0) = 0, k > 1.
Equation (5.4) is trivially satisfied due to our choice of λ0 and e0.
Now let us recall that in our situation the image im(A0 − λ0I) coincides

with with the orthogonal complement of e0. Therefore, for equation (5.5) to
be solvable it is necessary and sufficient that

(λ1e0 −Be0, e0) = 0.

52



Hence
λ1 = (Be0, e0).

With this λ1, equation (5.5) has one and only one solution e1 ⊥ e0. In the
same way choosing

λ2 = (Be1, e0)

one can find a unique solution e2 ⊥ e0 of (5.6), etc.
Exercise 5.2. Calculate eigenvalues and eigenvectors of

A =
1 +

2

up to the second order of .

Now we consider a simplest example with degeneration.

Example 5.3. Let

A = a0 + B =
1 0
0 1

+
1 1
1 0

.

Here λ0 = 1 is a multiple eigenvalue of A0, with multiplicity 2, and all vectors
are eigenvectors. However, B has two simple eigenvalues. Let µ be one such
an eigenvalue, with the eigenvector e0. Then e0 is an eigenvector of A , with
corresponding eigenvalue 1 + µ.

Exercise 5.4. Find eigenvalues and eigenvectors of

A =
1 + 2

1

up to second order of .

5.2 The Riesz projector

Let us introduce a powerful tool of operator theory, the so-called Riesz pro-
jector. Let A be a closed linear operator in H such that its spectrum σ(A)
is a union of two disjoint closed subsets σ0 and σ1 one of them, say σ0, is
compact. Then there exists an (counterclockwise) oriented piecewise smooth
closed contour Γ ⊂ C such that σ(A) ∩ Γ = ∅ and a part of σ(A) inside Γ
is just σ0. (Such a contour may contain more than one component). The
operator

(5.7) P =
1

2πi Γ

Rzdz,
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where Rz = (A − zI)−1 is the resolvent of A, is called the Riesz projector
associated with σ0. Since Rz is an analytic function outside σ(A), the oper-
ator P does not depend on choice of Γ. One can prove that P is indeed a
projector. However, we do not discuss here the general situation. Instead,
we consider the case of self-adjoint operators.

Proposition 5.5. Let A be a self-adjoint operator, Eλ its decomposition of
identity. Assume that σ0 = σ(A) ∩ (a, b), a, b ∈ σ(A). Then P = E(a, b) =
Eb − Ea.
Proof. There exist > 0 such that a− , b+ ∈ σ(A) and σ0 = σ(A) ∩ (a−
, b+ ). Choose Γ such that Γ ∩ R = {a− , a+ }. Now

Rz =
R

dEλ

λ− z = σ(A)

dEλ

(λ− z) .

Hence

P =
1

2πi Γ R

dEλ

(λ− z) dz.

It is not difficult to verify that one can change the order of integrals here.
Therefore,

P =
R

1

2πi Γ

dz

(λ− z) dEλ.

Due to the Cauchy integral formula, the internal integral is equal to 1 if
λ ∈ (a − , b + ), and 0 if λ ∈ [a − , b + ]. In other words, this integral is
just χ(a− ,b+ )(λ), the characteristic function of (a− , b+ ). Hence,

P =
R
χ(a− ,b+ )(λ)dEλ = Eb+ − Ea− .

Since σ(A)∩ (a− , a) = σ(A)∩ (b, b+ ) = ∅, we see that P = Eb−Ea.
Corollary 5.6. Let A be a self-adjoint operator and σ0 = {λ0}, where λ0
is an isolated point of σ(A). Then the Riesz projector P is an orthogonal
projector onto the eigenspace corresponding to λ0.

5.3 The Kato lemma

Let A be a self-adjoint (in general, unbounded) operator in H, D(A) its
domain and Rz(A) its resolvent. We want to understand which operators may
be considered as small perturbations of A. First we fix a point z0 ∈ C\σ(A).
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Proposition 5.7. (i) There exists > 0 with the following property: If
B is a symmetric operator such that the operator R = BRz0(A) =
B(A − z0I)−1 is everywhere defined, bounded and R < , then the
operator A+B, with D(A+B) = D(A), is self-adjoint.

(ii) Let K be a compact subset of C\σ(A). If is small enough ( < 0(K)),
then σ(A+B) ∩K = ∅ and

Rz(A+B)−Rz(A) < δ, z ∈ K,

where δ = δ( )→ 0, as → 0.

Proof. Since R = B(A− z0I)−1 is everywhere defined, and im(A− z0I)−1 =
D(A), we see that D(B) ⊃ D(A). On D(A) we have B = R(A − z0I).
Therefore,

(5.8)

A+ B − zI = A+R(A− z0I)− zI
= [I +R(A− z0I)(A− zI)−1](A− zI)
= [I +R((A− zI) + (z − z0)I)(A− zI)−1](A− zI)
= [I +R + (z − z0)R(A− zI)−1](A− zI).

Due to the spectral theorem,

(A− zI)−1 = [dist(z,K)]−1 = [ inf
z ∈σ(A)

|z − z |]−1

(prove it). Let K be a compactum such that K ∩ σ(A) = ∅. Then there is
c > 0 such that (A− zI)−1 ≤ c, z ∈ K. Now let

< [sup
z∈K
(1 + |z − z0| (a− zI)−1 )]−1.

Then

(5.9) R + (z − z0)R · (A− z)−1 < 1

and, hence, the operator

I +R+ (z − z0)R · (A− z0I)−1I

has a bounded inverse operator. This implies that σ(A + B) ∩ K = ∅.
Moreover, the norm in (5.9) goes to 0, as → 0. Hence,

I +R+ (z − z0)R · (A− z0I)−1 → I
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in L(H) uniformly with respect to z ∈ K. This proves statement (ii).
Let us now prove (i). Due to (ii), Rz(A + B) is defined for z = ±i

provided is small enough. Since A+B is obviously symmetric, this implies
that R−i(A+ B) = Ri(A+B)∗ (verify it). Now we have

(A+B)∗ − iI − (A+B − iI)∗ = [R−i(A+B)−1]∗
= [R−i(A+B)∗]−1 = [Ri(A+B)]−1 = A−B − iI,

which implies (A+B)∗ = A+B.

5.4 Perturbation of eigenvalues

Let us consider a family of (in general, unbounded) operators A( ) parame-
trized by ∈ (− 0, 0). We assume that

A( ) = A0 +G( ),

where A is a self-adjoint operator and G( ) is a symmetric operator such
that G(0) = 0, and for some z0 ∈ σ(A0) the operator G( )(A0 − z0I)−1 is
everywhere defined, bounded and depends analytically on ∈ (− 0, 0). The
last means that

G( )(A0 − z0I)−1 =
∞

k=0

kBk,

where Bk ∈ L(H) and the series converges in L(H) for all ∈ (− 0, 0).
Due to Proposition 5.7., A( ) is a self-adjoint operator provided | | is small
enough (say | | < 1).
Now assume that λ0 ∈ R is an isolated eigenvalue of finite multiplicity

for the operator A0. This means that

σ(A0) ∩ (λ0 − δ,λ0 + δ) = {λ0}
for some δ > 0 and the eigenspace

{Ψ ∈ D(A0) : A0Ψ = λ0Ψ}
is finite dimensional.

Theorem 5.8. There exist analytic vector functions Ψj( ), j = 1, 2, . . . ,m,
and scalar analytic functions λj( ), j = 1, 2, . . . ,m, defined in a neighborhood
of 0 ∈ R, such that
(5.10) A( )Ψj( ) = λj( )Ψj( )

and {Ψj( )} is an orthonormal basis in the space E( )(λ0 − δ,λ0 + δ), where

E
( )
λ is the decomposition of identity for A( ).
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Proof.

1) Let Γ ⊂ C be a contour around λ0 such that there are no points of
σ(A0) inside Γ, and

P ( ) =
1

2πi Γ

Rz(A( ))dz

the Riesz projector. Proposition 5.7 (ii) implies that Γ ∩ kσ(A( )) = ∅
provided | | is small enough. Now we apply (5.8) with A = A0, B =
G( ) and

R = R( ) = G( )(A0 − z0I)−1.
We obtain

Rz(A( )) = Rz(A0)[I +R( ) + (z − z0)R( )Rz(A0)]−1,

which implies that Rz(A( )) is analytic in uniformly with respect to
z ∈ Γ. Hence, P ( ) depends analytically on , provided is close to
0. P ( ) is an orthogonal projector, since it coincides with the spectral
projector E( )(λ0 − δ,λ0 + δ) of A( ), δ > 0 small enough.

Consider a subspace L = P ( )H, the image of P ( ). We want to prove
that dimL does not depend on . Let Q( ) = I − P ( ),

C( ) = Q( )Q(0) + P ( )P (0),

C1( ) = Q(0)Q( ) + P (0)P ( ).

All these operators depend analytically on and, clearly, C(0) =
C1(0) = I. Hence, C( ) and C1( ) are invertible operators for all
close to 0. However, C( ) maps L0 into L , while C1( ) maps L into
L0. Since C( ) and C1( ) are invertible, this implies that dimL =
dimL0 = m.

Moreover, if {Ψ1, . . . ,Ψm} is an orthonormal basis in L0, then
{C( )Ψ1, . . . , C( )Ψm} is a basis in L which depends analytically on
. Applying the orthogonalization procedure, we obtain an orthonor-
mal basis {ϕ1, ( ), . . . ,ϕm( )} in L such that ϕj( ) = Ψj and all Ψj( )
depend analytically on . The space L is invariant under action of
A( ). Hence, the restriction of A( ) to L is represented in this basis by
an Hermitian matrix (ajk( )) depending analytically on . Moreover,
ajk(0) = λ0δjk, where δjk is the Kronecker symbol. Thus, we have re-
duced the problem to the case of Hermitian (m×m)-matrix D( ) which
is analytic in and D(0) = λ0I.
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2) Now we consider the reduced problem about the matrix D( ). The
case m = 1 is clear. Suppose we have proved the assertion for all such
matrices of size < m, and consider the case of (m×m)-matrix D( ).
We can write

D( ) =
∞

k=0

kDk,

where all Dk are Hermitian matrices, D0 = D(0) = λ0I.

If all Dk are scalar multiples of the identity matrix, Dk = λ(k)I, then
D( ) = λ( )I, where

λ( ) =
∞

k=0

λ(k) k

is an analytic function. We can choose an arbitrary basis {Ψ1, . . . ,Ψm}
(not depending on ) and the required assertion is evident.

Assume now that not all Dk are scalar matrices, and Ds is the first one
which is not a scalar matrix, i. e. Dk = λ(k) for k < s andDs ∈ {λI}λ∈C.
Let

C( ) = Ds + Ds+1 +
2Ds+2 + . . .

Then

D( ) =
s−1

k=o

λ(k) kI + sC( ).

Therefore, if Ψ( ) is an eigenvector of C( ) with the eigenvalue µ( ),
i. e. C( )Ψ( ) = µ( )Ψ( ), then the same Ψ( ) is an eigenvector of D( )
with the eigenvalue

λ( ) =
s−1

k=0

λ(k) k + sµ(s).

Thus suffices to prove the assertion for the matrix C( ).

Now remark, that not all eigenvalues of Ds = C(0) coincide. Hence, as
on step 1), we can use the Riesz projector and reduce the problem to
the case of a matrix of the size < m.

Proposition 5.9. Let Ψj( ) be a normalized analytic vector function satis-
fying (5.10). Then λj( ) = dλj( )/d satisfies the following relation

(5.11) λj( ) = (A ( )Ψj( ),Ψj( )),
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where A ( ) is understood as

A ( ) =
d

d
[G( )(A0 − z0I)−1] (A0 − z0I).

We present here only formal calculations which lead to (5.11), not a rig-
orous proof. Differentiation of (5.10) gives

(5.12) A ( )Ψj( ) +A( )Ψj( ) = λj( )Ψj( ) + λj( )Ψj( ).

On the other hand,

(A( )Ψj( ),Ψj( )) = (Ψj( ), A( )Ψj( )) = λj( )(Ψj( ),Ψj( )).

Multiplying (5.12) by ϕj( ), we get

(A ( )Ψj( ),Ψj( )) = λj( )(Ψj( ),Ψj( ) = λj( )

which is required.
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6 Variational principles

6.1 The Glazman lemma

In many cases so-called variational principles are useful to study perturbation
of eigenvalues, as well as for numerical calculation of them. Glazman’s lemma
is one of such principles.
Let A be a self-adjoint operator in a Hilbert spaceH, Eλ its decomposition

of identity. Recall that Eλ+0 = Eλ in the sense of strong operator topology.
Set Eλ−0 = limµ→λ−0Eµ in the strong operator topology. We introduce the
so-called distribution function N(λ) of the spectrum of A by the formula

N(λ) = dim(EλH);
this value may be equal to +∞. Letting

N(λ− 0) = lim
µ→λ−0

N(kµ),

we see that
N(λ− 0) = dim(Eλ−0H).

In general, N(λ+ 0) = limµ→λ+0N(µ) may be not equal to N(λ).

Example 6.1. Let A be the operator of multiplication by the independent
variable x in L2(0, 1). Then N(+0) = +∞, while N(0) = 0.
However, let us point out that N(λ+0) = N(λ) provided N(λ+0) < +∞.
Now we are able to state the Glazman lemma.

Proposition 6.2. Let D ⊂ D(A) be a linear subspace (not closed) such that
A is essentially self-adjoint on D. Then for every λ ∈ R we have
(6.1) N(λ− 0) = sup{dimL : L ⊂ D, (Au, u) < λ(u, u) ∀u ∈ L \ {0}}
Proof.

1) Suppose that L ⊂ D and

(6.2) (Au, u) < λ(u, u) ∀u ∈ L \ {0}
Then dimL ≤ N(λ− 0). Assume not, i.e.

dimL > N(λ− 0).
Then

L ∩ (Eλ−0H)⊥ = {0}.
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(Indeed, if L ∩ (Eλ−0H)⊥ = {0}, then the projector Eλ−0 maps L into
Eλ−0H injectively, which implies that

dimL ≤ dim(Eλ−0H) = N(λ− 0)).

Now let 0 = u ∈ (Eλ−0H)⊥ ∩ L. Then, clearly,

(Au, u) ≥ λ(u, u),

which contradicts our assumption (6.2). Thus,

dimL ≤ N(λ− 0)

and we see that the right-hand side of (6.1), gλ, is not greater then the
left-hand side.

2) Let us prove that the left-hand side of inequality (6.1) is not greater
then gλ. First, remark that Eλ−0 = limN→−∞E(N,λ) in the strong
operator topology, where E(N,λ) = Eλ−0 − EN . Hence,

N(λ− 0) = lim
N→−∞

dim[E(N,λ)H].

Therefore, it suffices to prove that

dimE(N,λ)H ≤ gλ ∀N < λ.

With this aim, choose in E(N,λ)H an arbitrary orthonormal basis
(finite or infinite), and let {e1, . . . , ep} be a finite number of its elements.
We prove now that p ≤ gλ, which implies the required.
Since E(N,λ) ⊂ D(A), then ej ∈ D(A), j = 1, . . . , p. Hence, for every
> 0, there exists e1, . . . , ep ∈ D such that

ej − ej < , Aej − Aej < , j = 1 . . . , p−

(essential self-adjointness of A implies that D is dense in D(A) with
respect to the graph norm).

Let L be a linear hull of {e1, . . . , ep}. Then dimL = p, provided > 0
is small enough (prove this statement!). Moreover, if > 0 is small
enough, then L satisfies condition (6.2). Hence, p ≤ gλ and we con-
clude.
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Remark 6.3. In the proof above, we introduced E(N,λ), since, in general,
Eλ−0H may not lie in D(A).

In the case of positive self-adjoint operator A, it is sometimes useful to
associate with A a quadratic form. Assume first that A ≥ I, i. e.

(Au, u) ≥ (u, u) u ∈ D(A).
Let us introduce a semi-linear form

A(u, v) = (Au, v), u, v ∈ D(A).
The form A(·, ·) is an inner product and, hence, generates a new norm

u A = A(u, u)
1/2, u ∈ D(A),

on D(A). Obviously, u A ≥ u . Denote by HA the completion of D(A)
with respect to the norm · A. Our claim is that there is a natural continuous
embedding HA ⊂ H. Indeed, if {xn} ⊂ D(A) is a Cauchy sequence in the
norm · A, then it is also a Cauchy sequence in H, and, hence, has a limit in
H. This limit is a member of HA. Moreover, · A is equivalent to the norm

u A = ( u
2 + A1/2u 2)1/2,

since (Au, u) = (A1/2u,A1/2u). The operator A1/2 is closed and the last norm
· A is just the graph norm on D(A1/2). Moreover, D(A) is dense in D(A1/2)
with respect to · A (prove this!). Therefore, up to norm equivalence, HA

coincides with D(A1/2). By continuity, A(u, v) is well defined on HA and
defines there an inner product

A(u, v) = (A1/2u,A1/2v).

This construction may be extended to the case of general self-adjoint
operator A which is semi-bounded from below, i. e. A ≥ −αI,α ∈ R, or

(Au, u) ≥ −α(u, u), u ∈ D(A).
Set Â = A+(α+1)I. Then Â ≥ I and the previous construction works. We
get a new Hilbert space HÂ and a new form (inner product) Â(·, ·) on HÂ.
Now we set

A(u, v) = Â(u, v)− (α+ 1)(u, v).
on HÂ. In fact, A(u, v) is an extension of (Au, v) from D(A) to HÂ by
continuity.
Now we have the following version of Glazman’s lemma.
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Proposition 6.4. Let A be a semi-bounded from below self-adjoint operator,
D a dense linear subspace of HA. Then for every λ ∈ R

(6.3) N(λ− 0) = sup{dimL : L ⊂ D, A(u, u) < λ(u, u) ∀u ∈ L \ {0}}.

The proof is similar to that of Proposition 6.2. The only difference is that
now one does not need to approximate ej by ej ∈ D. (Complete the details!)
Another (simplified) version of Glazman’s lemma is also useful.

Proposition 6.5. For every self-adjoint A and λ ∈ R we have

(6.4) N(λ) = sup{dimL : L ⊂ D(A), (Au, u) ≤ λ(u, u) ∀u ∈ L}.

Exercise 6.6. Prove the last statement.

Now we give some applications of previous results.

Proposition 6.7. Let A1 and A2 be self-adjoint operators. Assume that
there is a dense linear subspace D of H such that A1 and A2 are essentially
self-adjoint on D and

(A1u, u) ≤ (A2u, u), u ∈ D.

Then

N1(λ+ 0) ≥ N2(λ+ 0), λ ∈ R,(6.5)

N1(λ− 0) ≥ N2(λ− 0), λ ∈ R,(6.6)

where N1 and N2 are the distribution functions of spectra for A1 and A2. If,
in addition, D(A1) = D(A2), then

(6.7) N1(λ) ≥ N2(λ), λ ∈ R.

Proof. Inequality (6.6) follows immediately from Proposition 6.2. Since the
set of jumps of each monotone function is at most countable, (6.6) implies
(6.5). To prove the last statement, we remark that, by continuity, the in-
equality

(A1u, u) ≤ (A2u, u)
holds true for u ∈ D(A1) = D(A2). Then, Proposition 6.5. works.
Exercise 6.8. Complete the details in the last proof and show that N(λ) is
non-decreasing.
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Corollary 6.9. Let A1, A2 be as in Proposition 6.7. Assume that A1 is
semi-bounded from below and, for some λ ∈ R, σ(A1) ∩ (−∞,λ) is discrete,
i. e. consists of isolated eigenvalues of finite multiplicity. Then so is for A2.
Moreover,

N1(λ− 0) ≥ N2(λ− 0).
Remark 6.10. In fact, N1(λ−0) and N2(λ−0) are just sums of multiplicities
of eigenvalues in (−∞,λ) for A1 and A2, respectively.
Proof. If A1 ≥ CI, then A2 ≥ CI and σ(A1), σ(A2) ⊂ [C,+∞). There-
fore, for each λ ⊂ λ the set σ(A1) ∩ (−∞,λ ) = σ(A1) ∩ [C,λ ) consists
of eigenvalues of finite multiplicity or, equivalently, N1(λ − 0) < +∞. By
Proposition 6.7, so is for A2, and we conclude, since λ < λ is arbitrarily
chosen.

Corollary 6.11. Let A1 and A2 be as in Corollary 6.9. Denote by λ1 ≤ λ2 ≤
. . . and λ1 ≤ λ2 ≤ . . . their eigenvalues in (−∞,λ), counting multiplicity
(any such a sequence, or both of them, may be finite). If λk is well-defined
for some k, then so is for λk and λk ≤ λk.

Proof. If λk is defined, then λk < λ and, hence, N2(λk) ≥ k. By (6.5),
N1(λk) ≥ k, which implies that λk ≤ λk.

Corollary 6.12. Let A be a semi-bounded from below self-adjoint operator
and B a bounded self-adjoint operator. Assume that σ(A) ∩ (−∞,λ) is dis-
crete. Then, for λ < λ, σ(A + B) ∩ (−∞,λ ) is discrete, provided | | is
small enough. Moreover, the eigenvalues λn( ) ∈ (−∞,λ ) of A+ B, labeled
in the increasing order, are continuous functions of .

Proof. Let M = B . Then, obviously,

A− MI ≤ A+ B ≤ A+ MI.

If λn ∈ (−∞,λ ) are eigenvalues of A, then the eigenvalues of A± MI are
λn ± M . By Corollary 6.11.,

λn − M ≤ λn( ) ≤ λn + M.

This implies continuity of λn( ) at = 0. Replacing A by A+ 0B, we obtain
continuity of λn( ) at the point 0.
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6.2 The minimax principle

First we introduce more general ”eigenvalues” λn for a semi-bounded from
below self-adjoint operator A. If σ(A) ∩ (−∞,λ) is discrete, then λ1 ≤
λ2 ≤ . . . are corresponding eigenvalues (counting multiplicity). If for some
λ ≤ +∞ we have infinitely many such eigenvalues, then λn is well-defined
for all natural n. In general, we set

λn = sup{λ : N(λ) < n}.
This, in fact, generalizes the previous definition. If, for example, the bottom
µ0 of σ(A) is not an eigenvalue, then, clearly, λn = µ0 for all n. More
generally, if σ(A) consists of [α,+∞) and of a finite number of eigenvalues
below α, then λn = α for n ≥ n0.
Now we can state the following minimax principle of Courant.

Theorem 6.13. Let A be a self-adjoint semi-bounded from below operator ,
D ⊂ H a dense linear subspace on which A is essentially self-adjoint. Then

(6.8) λ1 = inf
f∈D\{0}

(Af, f)

(f, f)
,

(6.9) λn+1 = sup
L⊂D

dimL=n

inf
f∈D∩L⊥
f=0

(Af, f)

(f, f)
.

Proof. Clearly, (6.8) is a particular case of (6.9). First, we prove that the
right-hand side of (6.9) does not depend on D and, therefore, we can assume
that D = D(A). For each L ⊂ D, we have D = L ⊕ (D ∩ L⊥) and D(A) =
L ⊕ (D(A) ∩ L⊥). This implies that A|D(A)∩L⊥ is the closure of A|D∩L⊥.
Hence,

(6.10) inf
f∈D∩L⊥
f=0

(Af, f)

(f, f)
= inf

f∈D(A)∩L⊥
f=0

(Af, f)

(f, f)
.

Recall that D is dense in D(A) with respect to the graph norm

f 2
A = f 2 + Af 2.

Let L ⊂ D(A) and dimL = n. Choose an orthonormal basis {e1, . . . , en} ⊂
L. Approximate each ej by a vector form D and then orthogonalize approxi-
mating vectors. As a result, we get an orthonormal system {e1, . . . , en} ⊂ D
such that

ej − ej < δ,
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δ is small. Let L = span{e1, . . . en} ⊂ D. Consider orthogonal projectors PL
and PL onto L and L, respectively. They are defined by

PLf =
n

j=1

(f, ej)ej,

PLf =
n

j=1

(f, ej)ej.

These formulas imply that

PLf − PLf A < f A,

where = (δ)→ 0 as δ → 0. From the last inequality it follows that

PL⊥f − PL⊥f A < f A,

where PL⊥ = I − PL and PL⊥ = I − PL are orthogonal projectors onto L⊥
and L

⊥
, respectively. Hence, given f ∈ D(A) ∩ L⊥, letting f = P

L
⊥f we

get f ∈ D(A) ∩ L⊥ and f − f A < . Therefore, replacing L by L in the
right-hand part of (6.9), we change it by a value which tends to 0, as δ → 0.
Thus, we can assume that D = D(A). By definition of λn, we have

m = dim(EλnH) = N(λn) = N(λn + 0) ≥ n

and
dim(Eλn−0H) = N(λn − 0) < n.

(m may be finite or infinite). Hence, there exists a subspace L ⊂ EλnH such
that dimL = n and L ⊃ Eλn−0H.
First, consider the case m > n. Then it is not difficult to verify that

λn+1 = λn. Now we have

L⊥ ⊂ (Eλn−0H)⊥ = (I − Eλn−0)H = H

Obviously, σ(A|M) ⊂ [λn,+∞). Hence

(Af, f) ≥ λn(f, f) = λn+1(f, f), f ∈ L⊥.

Assume, that m = n. In this case L = EλnH. If λn+1 > λn, then L =
Eλn+1−0H, and, therefore,

(6.11) (Af, f) ≥ λn+1(f, f), f ∈ L⊥.
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The case λn+1 = λn is already considered. This implies that the right-hand
part of (6.9) is not less then λn+1.
Now let us prove the opposite inequality. In fact, for every L ⊂ D(A),

dimL = m, we have to prove the existence of a nonzero vector f ∈ D(A)∩L⊥
such that

(Af, f) ≤ λn+1(f, f).

However, one can take as such an f any nonzero vector in Eλn+1H∩L⊥. The
last intersection is nontrivial, since

dim(Eλn+1H) = N(λn+1) ≥ n+ 1.
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7 One-dimensional Schrödinger operator

7.1 Self-adjointness

Consider an operator H0 defined on D(H0) = C
∞
0 (R) by the formula

(7.1) H0u = −u + V (x)u,

where V (x) ∈ L∞loc(R) is a real valued function. Clearly, H0 is a symmetric
operator in L2(R). Recall that H0 is said to be essentially self-adjoint if its
closure H∗∗

0 is a self-adjoint operator. In this case H0 has one and only one
self-adjoint extension.

Theorem 7.1. Assume that

(7.2) V (x) ≥ −Q(x),
where Q(x) is a nonnegative continuous even function which is nondecreasing
for x ≥ 0 and satisfies

(7.3)
∞

−∞

dx

Q(2x)
=∞.

Then H0 is essentially self-adjoint.

Proof. As we have already seen in previous lectures, to prove self-adjointness
of H∗∗

0 it is enough to show that H∗
0 is a symmetric operator. Hence, first we

have to study the domain D(H∗
0 ).

(i) If f ∈ D(H∗
0 ), then f (x) is absolutely continuous and f ∈ L2loc(R).

Indeed, let g = H∗
0f . For every ϕ ∈ C∞0 (R) we have

∞

−∞
f(x)ϕ (x) =

∞

−∞
(V (x)f(x)− g(x))ϕ(x)dx.

Denote by F (x) the second primitive function of V (x) · f(x) − g(x).
Then the previous identity and integration by parts imply

∞

−∞
f · ϕ dx =

∞

−∞
F · ϕ dx.

Hence, (F − f) = 0 in the sense of distributions, i. e. F − f is a linear
function of x. This implies immediately the required claim.

Now we have to examine the behavior of f ∈ D(H∗
0 ) as x→∞.
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(ii) If f ∈ D(H∗
0 ), then

(7.4)
∞

−∞

|f (x)|2
Q(2x)

dx <∞.

To prove the last claim, consider the integral

J =
w

−w
(1− |x|

w
)(f (x)f(x) + f(x)f (x))

=
w

−w
(1− |x|

w
)(f · f + f · f ) dx− 2

w

−w
(1− |x|

w
)|f |2dx.

Integrating by parts, we obtain

J = (f · f + f · f )(1− |x|
w
)
w

x=−w
− 2

w

−w
(1− |x|

w
)|f |2dx

+
1

w

w

−w
(f · f + f · f ) sgn xdx

=
1

w

w

−w
(f · f + f · f ) sgn xdx− 2

w

−w
(1− |x|

w
)|f |2dx

=
1

w

w

−w
(|f |2) sgn xdx− 2

w

−w
(1− |x|

w
)|f |2dx

=
1

w
[|f(w)|2 + |f(−w)|2 − 2|f(0)|2]− 2

w

−w
(1− |x|

w
)|f |2dx.

Thus, we get the following identity

w

−w
(1− |x|

x
)|f (x)|2dx = −1

2

w

−w
(f · f + f · f ) · (1− |x|

w
)dx

+
1

2w
[|f(w)|2 + |f(−w)|2 − 2|f(0)|].

Multiplying the last identity by w, integrating over w ∈ [0, t], and
taking into account the identity

T

0

(
w

−w
(w − |x|)h(x)dx)dw = 1

2

T

−T
(T − |x|)2h(x)dx

(prove it!), we get

T

−T
(T − |x|)2|f |2dx = −1

2

T

−T
(T − |x|)2(f · f + f · f )dx

+
T

0

(|f(w)|2 + |f(−w)|2)dw − 2|f(0)|2T,
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or, dividing by T 2,

T

−T
(1− |x|

T
)2|f |2dx = −1

2

T

−T
(1− |x|

T
)2(f · f + f · f )dx

+
1

T 2
(

T

−T
|f(x)|2dx− 2|f(0)|2 · T ).

Letting g = −f + V (x)f , we obtain

T

−T
(1− |x|

T
)2|f |2dx

=
1

2

T

−T
(1− |x|

T
)2(g · f + g · f)dx−

T

−T
(1− |x|

T
)2V (x)|f(x)|2dx

+
1

T 2
(

T

−T
|f(x)|2dx− 2|f(0)|2T )

Now remark that f, g ∈ L2(R) and 0 ≤ 1− |x|/T ≤ 1 for x ∈ (T,−T ).
Hence, estimating −V (x) by Q(x), we get

T

−T
(1− |x|

T
)2|f |2dx ≤

T

−T
(1− |x|

T
)2Q(x)|f |2dx+ c,

where c is independent of T . The last inequality implies clearly

(7.5)
1

4

T/2

−T/2
|f (x)|2dx ≤

T

−T
Q(x)|f |2dx+ c

Let

ω(T ) =
1

4

T/2

−T/2
|f |2dx,

χ(T ) =
T

−T
Q(x)|f |2dx+ c

Consider the integral

T

0

ω (x)− χ (x)

Q(x)
dx

and apply the following theorem on mean value: if f(x) is a continuous
function and K(x) ≥ 0 is a nondecreasing continuous function, then
there exists ξ ∈ [a, b] such that

b

a

f(x)K(x)dx = K(a)
ξ

a

f(x)dx.
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Then, due to (7.5) we obtain

T

0

ω χ

Q
dx =

1

Q(0)

ξ

0

(ω − χ )dx

=
1

Q(0)
[ω(ξ)− χ(ξ)− ω(0) + χ(0)]

≤ 1

Q(0)
[χ(0)− ω(0)] = C.

Since

ω (x) =
1

2
[|f (x

2
)|2 + |f (−x

2
)|2],

χ (x) = Q(x)[|f(x)|2 + |f(−x)|2],
we get immediately

1

8

T

0

|f (x/2)|2 + |f (−x/2)|2
Q(x)

dx

≤
T

0

(|f(x)|2 + |f(−x)|2)dx+ C.

Since f ∈ L2(R), the last inequality implies the required claim.
End of proof of Theorem 7.1. Let f1, f2 ∈ D(H∗

0 ) and

gi = −fi + V (x)fi, i = 1, 2.

We have to show that

∞

−∞
f1g2dx =

∞

−∞
g1f 2dx.

First we observe that

(7.6)

t

−t
(f1g2 − g1f 2)dx =

t

−t
(f1f2 − f1 f2)dx

=
t

−t

d

dx
(f1f2 − f1f2)dx

= [f1f2 − f1f2]|t−t.
Let

ρ(t) =
1

Q(2t)
, P (x) =

x

0

ρ(t)dt.
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Multiplying (7.6) by ρ(t) and integrating over [0, T ], we obtain

(7.7)
T

0

ρ(t)[
t

−t
(f1g2 − g1f 2)dx]dt =

T

0

ρ(t)[f1 − f 2 − f1f 2]|t−tdt.

For the left-hand part we have (changing the order of integration)

T

0

ρ(t)[
t

−t
(f1g2 − g1f 2)dx]dt

=
T

−T
[(f1g2 − g1f 2)

T

|x|
ρ(t)dt]dx

=
T

−T
(f1g2 − g1f 2)(P (T )− P (|x|))dx.

Now we estimate the right-hand part of (7.7) (more precisely, its typical
term):

|
T

0

f1(t)f2(t)ρ(t)dt| ≤ [
T

0

|f1(t)|2dt
T

0

|f2(t)|2ρ2(t)dt]1/2 ≤ C,

where, due to claim 2), the constant C is independent of T . Therefore,

|
T

T

(P (T )− P (|x|))[f1 · g2 − g1 · f2]dx| ≤ C.

Dividing by P (T ) and letting T → +∞ (hence, P (T )→ +∞), we get

(7.8) lim
t→+∞

|
T

−T
(1− P (|x|)

P (T )
)[f1g2 − g1f2]dx| = 0.

Now we have to prove that

(7.9) lim
T→+∞

|
T

−T
[f1g2 − g1f2]dx| = 0

To end this we fix > 0. Since fi, gi ∈ L2(R),

|x|≥w
(|f1||g2|+ |g1||f2|)dx ≤

for all w large enough. Then, for each T ≥ w we have

|
w

−w
(1− P (|x|)

P (T )
)[f1g2 − g1f2]dx|

≤ |
T

−T
(1− P (|x|)

P (T )
)[f1g2 − g1f2]dx|+ .
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Letting T → +∞ and using (7.8), we obtain

|
w

−w
(f1g2 − g1f2)dx| ≤ ,

which implies (7.9).

Example 7.2. V (x) = a(1 + |x|)α. If either a ≥ 0, α ∈ R, or a < 0, α ≤ 2,
then the assumptions of Theorem 7.1 are satisfied. Hence, H0 is essentially
self-adjoint. It is known that in the case a < 0, α > 2, H0 is not an essentially
self-adjoint operator.

7.2 Discreteness of spectrum

Consider the operator H0 defined by (7.1). Assume that V (x) ∈ L∞loc(R) is a
real valued function and

(7.10) lim
x→∞

V (x) = +∞.

Clearly, Theorem 7.1 implies that H0 is essentially self-adjoint (take as Q(x)
and appropriate constant). Denote by H the closure of H0.

Theorem 7.3. Assume (7.10). Then the spectrum σ(H) of H is discrete,
i.e. there exists an orthonormal system yk(x), k = 0, 1, . . ., of eigenfunctions,
with eigenvalues λk → +∞ as k →∞.
Proof. Without loss of generality, one can assume that V (x) ≥ 1. Then, we
have

(Hu, u) ≥ (u, u), u ∈ D(H),
which implies the existence of bounded inverse operator H−1. The conclusion
of theorem is equivalent to compactness of H−1. We will prove that H−1/2 is
a compact operator. (Prove that this implies compactness of H−1). To end
this, we consider the set

M = {y|y ∈ D(H), (Hy, y) ≤ 1}
and prove that M is precompact in L2(R).
Let us also consider the set

MN = {y : y ∈M, y(x) = 0 if |x| ≥ N}.
Integration by parts implies that

(7.11) (Hy, y) =
∞

−∞
(|y |2 + V (x)|y|2)dx, y ∈MN .
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Let us fix a function ϕ(x) ∈ C∞0 (R) such that 0 ≤ ϕ(x) ≤ 1, ϕ(x) = 1 if
|x| ≤ 1/2, ϕ(x) = 0 if |x| ≥ 1, and |ϕ (x)| ≤ B.
If y ∈M and N ≥ 2B, then

yN (x) = ϕ(
x

N
)y(x) ∈ 2MN ,

where
2Mn = {y|y(x) = 2z(x), z ∈MN}.

Indeed, due to (7.11), we have

(HyN , yN) =
∞

−∞
[| 1
N

ϕ (
x

N
)y(x) + ϕ(

x

N
)y (x)|2

+ V (x)|ϕ( x
N
)y(x)|2]dx

=
∞

−∞
[
1

N 2
ϕ 2(

x

N
)|y(x)|2 + ϕ2(

x

N
)|y (x)|2+

+
2

N
ϕ(
x

N
)ϕ (

x

N
)Re(y(x)y (x)) + V (x)ϕ2(

x

N
|y(x)|2]dx.

Estimate separately the terms under the integral as follows:

1

N2
ϕ 2(

x

N
)|y(x)|2 ≤ B2

N2
|y(x)|2 ≤ 1

4
|y(x)|2 ≤ V (x)

4
|y(x)|2,

ϕ2(
x

N
)|y (x)|2 ≤ |y (x)|2,

2

N
ϕ(
x

N
)ϕ (

x

N
Re(y(x)ϕ (x)) ≤ B

N
(|y(x)|2 + |y (x)|2) ≤

≤ 1
2
(V (x)|y(x)|2 + |y (x)|2),

V (x)ϕ2(
x

N
)|y(x)|2 ≤ V (x)|y(x)|2.

Putting all this together, we get

(HyN , yN ) ≤ 2,
which is required.
Now, for every y ∈M , we have

(HyN , yN) =
∞

−∞
|y(x)− ϕ(

x

N
)y(x)|2dx ≤

≤
|x|≥N/2

|y(x)|2dx ≤ ( min
|x|≥N/2

V (x))−1,
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since ∞

−∞
V (x)|y(x)|2dx ≤ (Hy, y) ≤ 1, y ∈M.

Assumption (7.10) implies that, for each > 0 there exists N > 0 such that
M is contained in the -neighborhood of 2MN . Thus, it suffices to prove the
compactness of MN .
In fact, we will prove even that MN is precompact in the space

C([−N,N ]). To do this we use the Arzela theorem. First we verify the
equicontinuity of MN . This follows from the estimate

(7.12) |y(x2)− y(x1)| = |
x2

x1

y (t)dt| ≤

≤ |x2 − x1|1/2(
x2

x1

|y (t)|2dt) ≤ |x2 − x1|1/2.

Moreover, (7.12) implies that

|y(x)| ≤ |y(t)|+ (2N)1/2, x, t ∈ [−N,N ].
Integrating the last inequality with respect to t ∈ [−N,N ] and using the
Cauchy inequality, we see that MN is bounded in C([−N,N ]). The proof is
complete.

Remark 7.4. In fact, for discreteness of σ(H) the following condition is
necessary and sufficient:

(7.13)
r+1

r

V (x)dx→ +∞ as r →∞.

Exercise 7.5. Prove the statement of Remark 7.4.

Now we supplement Theorem 7.3 by some additional information about
eigenvalues and corresponding eigenfunctions.

Theorem 7.6. Under the assumption of Theorem 7.3, all the eigenvalues
are simple. If λ0 < λ1 < λ2 < . . . are the eigenvalues, then any (nontrivial)
eigenfunction corresponding to λk has exactly k nodes, i.e. takes the value 0
exactly k times. All the eigenfunctions decay exponentially fast at infinity.

For the proof we refer to [1].
Except of exponential decay, all the statements of Theorem 7.6 have

purely 1-dimensional character. In particular, multidimensional Schrödinger
operators may have multiple eigenvalues.
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Exercise 7.7. Let V (x) ≥ > 0 for x ≥ a. Then the equation
−y + v(x)y = 0

has at most one (up to a constant factor) nontrivial solution such that y(x)→
0 as x→ +∞.

7.3 Negative eigenvalues

a. Dirichlet boundary condition

Consider the operator

(7.14) Hy = −y + V (x)y

on the half-axis R+ = {x|x ≥ 0} with the Dirichlet boundary condition
(7.15) y(0) = 0.

We assume that V ∈ L∞loc(R+) and
(7.16) V (x) ≥ −C0, x ∈ R+.
All the previous results hold in this case, with obvious changes. In particular,
H is a self-adjoint operator in L2(R+). More precisely, due to corresponding
version of Theorem 7.1, operator (7.14) is essentially self-adjoint on the sub-
space consisting of all y ∈ C∞(R+) such that y(0) = 0 and y(x) = 0 for all
sufficiently large x.
In addition to (7.16), we assume that

(7.17) lim
x→+∞

V−(x) = 0,

where V−(x) = min(V (x), 0), V+(x) = max(V (x), 0). For the sake of sim-
plicity we will also assume that V− is continuous. In this case one can show
that σ(H) ∩ {λ < 0} consists of isolated eigenvalues of finite multiplicity.
However, in fact, we will prove more strong result.
Denote by N−(H) the number of negative eigenvalues of H counting mul-

tiplicities. We set N−(H) = +∞ if either the number of negative eigenvalues
is infinite, or there is at least one non-isolated point of σ(H) in (−∞, 0). (In
our previous notation, N−(H) = N(−0)).
Theorem 7.8. Under the previous assumptions

(7.18) N−(H) ≤
∞

0

x|V−(x)|dx.
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Proof. First, due to comparison results discussed in previous lectures, with-
out loss of generality we can assume that V+(x) = 0 and, hence, V (x) =
V−(x). Moreover, we assume that V (x) ≡ 0, since the last case is trivial.
Consider a family of operators

Hτy = −y + τV (x)y, 0 ≤ τ ≤ 1.
Assumption (7.17) and Exercise 7.7 imply that the negative part of σ(Hτ )
consists of simple eigenvalues

λ1(τ) < λ2(τ) < . . . < λn(τ) < . . .

From the perturbation theory we know that λn(τ) is an analytic function of
τ and, moreover,

(7.19) λn(τ) =
∞

0

V (x)|ϕn(τ, x)|2dx < 0,

where ϕn(τ, x) is the normalized eigenfunction of Hτ with the eigenvalue
λn(τ). In fact, for any fixed τ , λn(τ) is defined only on a subinterval
(τ0(n), 1] ⊂ [0, 1].
Given µ0 < 0, denote by Nµ0 the number of eigenvalues of H in (−∞, µ0).

Clearly, Nµ0 → N−(H) as µ0 → 0. Fix such µ0.
Varying τ from 1 to 0, we see that for each n there is τn such that λn(τn) =

µ0 provided λn(1) < µ0 (and only in this case). Thus, the eigenvalues λn =
λn(1) < µ0 are in 1− 1 correspondence with values τ ∈ (0, 1] such that there
exists a non-zero y ∈ L2(R+) satisfying
(7.20) −y − µ0y = −τV (x)y
and boundary condition (7.15).
Denote by L the differential operator

− d
2

dx2
− µ0

in L2(R+), with boundary condition (7.15). Since µ0 < 0, L is an invertible
operator and

(L−1f)(x) =
∞

0

K(x, ξ)f(ξ)dξ.

A direct calculation (using variation of constants, the boundary condition
and assumption y ∈ L2(R+)) gives rise to the formula

K(x, ξ) = θ(ξ − x)sinh
√−µ0x√−µ0 e−

√−µ0ξ + θ(x− ξ)
sinh
√−µ0ξ√−µ0 e−

√−µ0x,
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where θ(x) = 1 if x ≥ 0, and θ(x) = 0 if x < 0.
Now equation (7.20) is equivalent to

y = τL−1[(−V )y].

Hence, the numbers τn are inverse eigenvalues of the integral operator K1

with the kernel function

K1(x, ξ) = −K(x, ξ)V (ξ).

Claim 7.9. K1 has at most countable number of non-zero eigenvalues λk.
All they are simple, positive, and

λk =
∞

0

K1(x, x)dx.

Let us postpone the proof of Claim and first finish the proof of theorem.
Using an easy inequality 1− e−t ≤ t, t ≥ 0, we have

Nµ0 ≤
τk≤1

τ−1k =
λk≥1

λk ≤ λk

=
∞

0

sinh
√−µ0x√−µ0 e−

√−µ0x|V (x)|

=
∞

0

1− e−2√−µ0x
2
√−µ0 |V (x)|dx ≤

∞

0

x|V (x)|dx.

Proof of Claim. Denote by K the integral operator with the kernel function
K(x, ξ), i.e. L−1, and by V the operator of multiplication by |V |. Obviously,
K1 = KV . Now consider the operator K2 = V 1/2KV 1/2, with the kernel
function

K2(x, ξ) = |V (x)|1/2K(x, ξ)|V (ξ)|1/2.
It is easily seen that

∞

0

K1(x, x)dx =
∞

0

K2(x, x)dx.

Now let λ ∈ C, λ = 0, Hλ(K1) and Hλ(K2) be eigenspaces of K1 and K2

with the eigenvalue λ. If f ∈ Hλ(K1), then V
1/2f ∈ Hλ(K2) (check this).

Thus, we have a well-defined linear map

(7.21) V 1/2 : Hλ(K1)→ Hλ(K2).
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We prove that this map is an isomorphism. Indeed, let f ∈ Hλ(K1) and
V 1/2f = 0. Then V f = 0. Hence, K1f = KV f = 0, which contradicts the
assumption λ = 0. Thus, (7.21) hat a trivial kernel. Now let g ∈ Hλ(K2).
Then V 1/2KV 1/2g = λg. Setting f = λ−1KV 1/2g, we have V 1/2f = g and
f ∈ Hλ(K1), which implies that (7.21) is onto.
Since K1 ≥ 0, its eigenvalues are nonnegative. Since the equation KV f =

λf is equivalent to the equation λLf = V f , we see that all the eigenvalues are
simple. Moreover, since K2(x, ξ) ≥ 0 is continuous, K2 is a nuclear operator
and

trK2 = trK1 =
∞

0

K2(x, x)dx =
∞

0

K1(x, x)dx.

b. Neumann boundary condition.

First we show by a counterexample that estimate (7.18) fails in the case
of Neumann boundary condition

(7.22) y (0) = 0,

as well as in the case of operator (7.14) on the whole axis.

Example 7.10. Let V (x) = 0 if |x| ≥ a and V (x) = − , > 0, if |x| < a.
We show that operator H with boundary condition (7.22) has a negative
eigenvalue for all > 0, a > 0, which implies obviously that estimate (7.18)
is impossible. To do this consider the equation on eigenfunctions on R with
negative eigenvalue λ

−y − y = λy, |x| < a,
−y = λy, |x| ≥ a.

At x = ±a the functions y and y have to be continuous. Obviously,
for corresponding operator H we have H ≥ − I. Hence, λ ≥ − . Since
the potential V is an even function, we see that y(−x) is an eigenfunction,
provided so is y. Since all the eigenvalues are simple, we have y(−x) = ±y(x).
If y(x) is odd, then y(0) = 0 and y is an eigenfunction of the Dirichlet
problem with negative λ, which is impossible. Consider the case of even y.
Then y (0) = 0 and

y(x) = C1 cos
√
+ λx, |x| < a,

y(x) = C2e
−√−λ|x|, |x| > a.
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Due to compatibility conditions at x = ±a, we have

C1 cos
√
+ λa− C2e−

√−λa = 0,

−C1
√
+ λ sin

√
+ λa+ C2

√−λe−
√−λa = 0.

Now λ is an eigenvalue iff there exists a nontrivial solution (C1, C2) of the
last system. Equivalently, the determinant

e−
√−λ[
√−λ cos(√ + λa)−√ + λ sin(

√
+ λa)]

should vanish. This gives rise to the equation

tan[a
√
+ λ] =

−λ
+ λ

.

The last equation always has a solution λ ∈ (− , 0) (draw a plot).
Now we consider the operator HN in L

2(R+) generated by the differential
expression −y + V (x)y and Neumann boundary condition y (0) = 0. We
assume that the potential is bounded below and locally bounded measurable
function. Denote by N−(HN ) the number of negative eigenvalues of HN .
Then we have

Theorem 7.11. N−(HN) ≤ 1 + ∞
0
x|V−(x)|dx.

Proof. Due to Theorem 7.4, it suffices to prove that

N−(HN) ≤ 1 +N−(H).

In fact, we have

N(λ− 0, HN ) ≤ 1 +N(λ− 0, H), λ ∈ R.

Let
D = {u ∈ C∞(R+) : u(0) = 0, suppu is bounded},
DN = {u ∈ C∞(R+) : u (0) = 0, supp u is bounded}.

The operators H and HN are essentially self-adjoint on D and DN , respec-
tively. We want to use the Glazman lemma discussed in previous lectures.
For H and HN , this lemma reads

N(λ− 0, HN) = sup{dimL : L ⊂ DN , (Hu, u) < λ(u, u), u ∈ L \ {0}}.
N(λ− 0, H) = sup{dim L̃ : L̃ ⊂ D, (Hu, u) < λ(u, u), u ∈ L̃ \ {0}}.
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Hence, we have to show that, given L ⊂ DN such that

(Hu, u) < λ(u, u), u ∈ L \ {0},

there exists L̃ ⊂ D such that

(Hu, u) < λ(u, u), u ∈ L̃ \ {0},

and
dimL ≤ 1 + dim L̃.

But the last is evident: set

L̃ = {u ∈ L : u(0) = 0}.

c. The case of whole axis.

Consider the operator

Hy = −y + V (x)y, x ∈ R,

assuming that V ∈ L∞loc(R) and V (x) ≥ −C0. Then H is a self-adjoint
operator in L2(R). Let N−(H) be the number of negative eigenvalues.

Theorem 7.12. N−(H) ≤ 1 + ∞
−∞|x||V−(x)|dx.

The proof is based on the Glazman lemma. We omit it here (see, e.g., [1]).
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8 Multidimensional Schrödinger operator

8.1 Self-adjointness

Consider the operator

(8.1) H0u = −∆u+ V (x)u
with D(H0) = C

∞
0 (Rn). We want to know whether H0 is an essentially self-

adjoint operator in L2(R). If this is the case, we denote by H the closure
of H0, i.e. H = H∗∗

0 . We have the following result which is similar to
Theorem 7.1.

Theorem 8.1. Assume that V ∈ L∞loc(Rn) and
V (x) ≥ −Q(|x|),

where Q(r) is a nonnegative, nondecreasing, continuous function of r ≥ 0
such that ∞

0

dr

Q(2r)
=∞.

Then H0 is essentially self-adjoint.

The proof goes along the same lines as that of Theorem 7.1, but is more
sophisticated. We omit it. Instead, we want to discuss another way to obtain
essential self-adjointness.
We start with the following criterion of self-adjointness.

Proposition 8.2. Let A be a closed, symmetric operator in a Hilbert space
H. The following statements are equivalent:
(i) A is self-adjoint;

(ii) ker(A∗ ± iI) = {0};
(iii) im(A± iI) = H.
Outline of Proof. 1) First, im(A± iI) is a closed subspace of H (prove it).
2) Since kerA∗ ⊕ imA = H and imA is closed, (ii) and (iii) are equivalent.
3) Obviously, (i) ⇒ (ii), since σ(a) ⊂ R for every self-adjoint A. Thus,
we have to show that (ii) and (iii) ⇒ (i). Since D(A) ⊂ D(A∗), we have
to prove that D(A∗) ⊂ D(A). Let f ∈ D(A∗) and ϕ = (A∗ + iI)f . By
(iii), there exists g ∈ D(A) such that (A+ iI)g = ϕ. Since A is symmetric,
Ag = A∗g. Hence,

(A∗ + iI)f = ϕ = (A∗ + iI)g
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or
(A∗ + iI)(f − g) = 0.

By (ii), f = g and f ∈ D(A). Thus D(A) = D(A∗) and A is self-adjoint.
Corollary 8.3. Let A be a symmetric operator. Then A is essentially self-
adjoint if and only if ker(A∗ ± iI) = {0}.
We have also the following version of Proposition 8.2.

Proposition 8.4. Let A be a closed, nonnegative, symmetric operator. Then
A is self-adjoint if and only if ker(H∗ + bI) = {0} for some b > 0.
Corollary 8.5. Let A be a nonnegative symmetric operator. Then H is
essentially self-adjoint if and only if ker(H∗ + bI) = {0} for some b > 0.
In what follows we will use the so-called Kato inequality. For any function

u, we define sgn u by

(sgnu)(x) =
0, u(x) = 0,

u(x)|u(x)|−1, u(x) = 0,

and a regularized absolute value of u by

u (x) = (|u(x)|2 + 2)1/2.

Clearly, limu (x) = |u(x)| pointwise and |u(x)| = (sgnu) · u.
Theorem 8.6. Let u ∈ L1loc(Rn). Suppose that the distributional Laplacian
∆u ∈ L1loc(Rn). Then

(8.2) ∆|u| ≥ Re[(sgnu)∆u]

in the sense of distributions.

Proof. First, let u ∈ C∞(Rn). We want to prove that (8.2) holds pointwise
except where |u| is not differentiable.
For such u(x) we have

(8.3) u ∇u = Reu∇u.

Since u ≥ |u|, we get

(8.4) |∇u | ≤ u−1|u||∇u| ≤ |∇u|.
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Next, take the divergence of (8.3), to obtain

|∇u |2 + u ∇u = |∇u|2 +Reu∆u.
Together with (8.4), this implies

u ∆u ≥ Reu∆u,
or

(8.5) ∆u ≥ Re[(sgn u)∆u],
where sgn u = uu−1. Prove that ∆u → ∆|u| pointwise (except where |u| is
not smooth) and sgn u→ sgnu pointwise.
The next step is based on regularization. Let ϕ ∈ C∞0 (Rn), ϕ ≥ 0, and

ϕdx = 1. We define ϕδ(x) = δ−nϕ(x/δ) and

(Iδu)(x) = (ϕδ ∗ u)(x) =
Rn

ϕδ(x− y)u(y)dy.

Iδ is called an approximate identity.
We list some properties of approximate identity:

(i) if u ∈ L1loc(Rn), then IδU ∈ C∞(Rn);
(ii) Iδ commutes with partial derivatives ∂|∂xi ;
(iii) the map Iδ : L

p(Rn)→ Lp(Rn) is bounded, with the norm ≤ 1;
(iv) for any u ∈ Lp(Rn), limδ→0 Iδu− u Lp = 0;

(v) for any u ∈ L1loc(Rn), Iδu→ u in L1loc(Rn).

Exercise 8.7. Prove (i)-(v).

Let u ∈ L1loc(Rn). Inserting Iδu into (8.5) in place of u, we obtain
∆(Iδu) ≥ Re[sgn (Iδu)∆(Iδu)].

Now one can pass to the limit as δ → 0 and next as → 0, to get (8.2).

Exercise 8.8. Justify the passage to the limit in the proof of Theorem 8.6.

As an application we state the following

Theorem 8.9. Let V ∈ L2loc(Rn) and V ≥ 0. Then H0 is essentially self-
adjoint.
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Proof. Clearly, H0 is nonnegative symmetric operator. By Corollary 8.5, it
is sufficient to show that ker(H∗

0 + I) = {0}. Thus, let us assume that
(8.6) −∆u+ V u+ u = 0
for some u ∈ L2(Rn) (in the sense of distributions). We have to prove that
u = 0.
We note that u ∈ L2(Rn) and V ∈ L2loc(Rn) imply that V u ∈ L1loc(Rn).

Furthermore, u ∈ L1loc(Rn). By (8.6), ∆u ∈ L1loc(Rn).
Now we apply the Kato inequality to get

∆|u| ≥ Re[(sgnu)∆u] = Re[(sgn u)(V + 1)u] = |u|(V + 1) ≥ 0.
As consequence,

∆Iδ|u| = Iδ∆|u| ≥ 0.
Obviously, Iδ|u| ≥ 0.
On the other hand Iδ|u| ∈ D(∆). Indeed, this follows from |u| ∈ L2(Rn)

and

(
∂

∂xi
Iδf) =

∂ϕδ

∂xi
(x− y)f(y)dy.

Now
(∆(Iδ|u|), (Iδ|u|)) = − ∇(Iδ|u|) 2

L2 ≤ 0.
Since the left side here is nonnegative, we see that ∇(Iδ|u|) = 0. Hence,
Iδ|u| = c ≥ 0. Since |u| ∈ L2(Rn), we have c = 0. Therefore, Iδ|u| = 0,
hence, |u| = 0.
Another approach to the problem relies on the notion of relatively bounded

operators and the Kato-Rellich theorem.
Let A and B be closed operators in H. One says that B is A-bounded if

D(A) ⊂ D(B). Obviously, any B ∈ L(H) is A-bounded for any A.
Proposition 8.10. If σ(A) = C and B is A-bounded, then there exist a ≥ 0
and b ≥ 0 and such that
(8.7) Bu ≤ a Au + b u

for all u ∈ D(A).
Proof. Let

u A = ( u
2 + Au 2)1/2

be the graph norm on D(A). We know that A is closed if and only if D(A) is
complete with respect to · A. Moreover, · A is induced by an inner product

u, v A = u, v + Au,Av .
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Denote by HA the space D(A) endowed with this inner product. Then HA

is a Hilbert space.

Exercise 8.11. If z ∈ σ(A), then RA(z) = (A− zI)−1 a bounded operator
from H onto HA.
Since B is A-bounded, we see that BRA(z) is everywhere defined on H.

Exercise 8.12. BRA(z) is closed operator on H.
Now the closed graph theorem implies that BRA(z) is bounded. Hence,

there exists a ≤ 0 such that

(8.8) BRA(z)f ≤ a f , f ∈ H.

For any f ∈ H, we have u = RA(z)f ∈ D(A) and each u ∈ D(A) can be
written in this form. Thus f = (A− z)u. Now (8.8) implies

Bu = BRA(z)f ≤ a (A− z)u ≤ a Au + b u ,

with b = |z|a.
The infimum of all a in (8.7) is called the A-bound of B. Note that b in

(8.7) depends, in general, on a. If B is A-bounded, then it follows from (8.7)
that there exists a constant c > 0 such that

Bu ≤ c u A, u ∈ HA,

i. e. B : HA → H is bounded. Conversely, if B is a bounded operator from
HA into H, then B is A-bounded.
Now we prove the following Kato-Rellich theorem.

Theorem 8.13. Let A be self-adjoint, and let B be a closed, symmetric,
A-bounded operator with A-bound less then 1. Then A+B, with D(A+B) =
D(A), is a self-adjoint operator.

Proof. First, we have the following

Lemma 8.14. Let A be self-adjoint and B be A-bounded with A-bound a.
Then

B(A− iλI)−1 ≤ a+ b|λ|−1
for all real λ = 0 and for some b > 0. The A-bound of B is given by

a = lim
|λ|→∞

BRA(iλ) .
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Proof of Lemma 8.14. Since A is self-adjoint, we have

(A− iλI)u 2 = Au 2 + |λ|2 u 2,

hence,
Au ≤ (A− iλI)u .

Setting u = RA(iλ)v yields

ARA(iλ) ≤ 1.
Exercise 8.15. If A is self-adjoint, then

RA(iλ) ≤ |λ|−1.
Now we have

BRA(iλ)u ≤ a ARA(iλ)u + b RA(iλ)u ≤ (a+ b|λ|−1) u ,
which implies the first statement.
The last inequality also shows that

lim sup
|λ|→∞

BRA(iλ) ≤ a.

On the other hand,

Bu = BRA(iλ)(A− iλI)u ≤ BRA(iλ) [ Au + |λ| u ].
This inequality and the definition of A-bound imply that the A-bound is not
greater then

lim inf
|λ|→∞

BRA(iλ) .

Exercise 8.16. A+B is closed on D(A).

Proof of Theorem 8.13 continued. Since a < 1, we have

(8.9) BRA(iλ) < 1

for λ large enough. Now

A+B − iλI = [I +BRA(iλ)](A− iλI).
Due to (8.9), I+BRA(iλ) is an invertible operator. Since A−iλI is invertible,
it follows that (A+B−iλI) is invertible. In particular, im(A+B−iλI) = H,
and, by Proposition 8.1, A+B is self-adjoint.
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As an application we have

Theorem 8.17. Let V ∈ L2(R3) + L∞(R3) and real. Then the operator
H = −∆+ V , with D(H) = D(∆) = H2(R3), is self-adjoint.

Remark 8.18. Recall that

Hm(Rn) = {u ∈ L2(Rn) : ∂αu ∈ L2(R3), |α| ≤ m}.
Remark 8.19. Suppose V ∈ Lp(Rn) + L∞(Rn), with p > 2 if n = 4 and
p > n/2 if n ≥ 5. Then the conclusion of Theorem 8.17 holds.

Proof. Let V = V1 + V2, with V1 ∈ L2(R3) and V2 ∈ L∞(R3). Since
V2u L2 ≤ V2 L∞ u L2 ,

we see that multiplication by V2 is ∆-bounded with ∆-bound 0.
Consider V = V1 ∈ L2(R3). Since ∆ is self-adjoint, iλ ∈ σ(∆) for all

λ ∈ R,λ = 0. We have
V R∆(iλ)f L2 ≤ V 2 R∆(iλ)f L∞ ,

provided the L∞-norm here is finite. Thus, it is enough to prove this.
In fact, on R3 we have the following integral representation for R∆(iλ)

(R∆(iλ)f)(x) = (4π)
−1

R3
e−(iλ)

1/2|x−y||x− y|−1f(y)dy.

Using the Young inequality, this implies

R∆(iλ)f L∞ ≤ f L2 Gλ L2 ,

where Gλ(x) = (4π)
−1 exp[−(iλ)1/2|x|]|x|−1 and

Gλ
2
L2 = (4π)

−2
R3
exp[−2Re(iλ)1/2|x|]|x|−2dx

is finite. Moreover, it is easy to check that limλ→∞ Gλ L2 = 0. Therefore,
for any > 0 we can find λ > 0 such that

Gλ L2 ≤ V −1
L2 .

Now it follows that for all λ large enough

V R∆(iλ)f L∞ ≤ f L2.

Since (8.8) implies (8.7), we have

V u ≤ ∆u + λ u , u ∈ D(A).
This implies that V is ∆-bounded with ∆-bound 0.
Applying the Kato-Rellich theorem, we conclude.
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8.2 Discrete spectrum

We assume here that V ∈ L∞loc(Rn) and

(8.10) lim inf
|x|→∞

V (x) = lim
R→∞

inf
|x|≥R

V (x) ≥ a.

Theorem 8.20. Under assumption (8.10) the operator H is bounded below
and, for each a < a, σ(H) ∩ (−∞, a ) consists of a finite number of eigen-
values of finite multiplicity.

Corollary 8.21. If lim|x|→∞ V (x) = +∞, then σ(H) is discrete.

Proof of Theorem 8.20. Clearly, V (x) ≥ −C for some C and, hence, H is
bounded below. Remark also that the conclusion of Theorem means that
the spectral projector Ea of H is finite dimensional for all a < a.

1) Let us consider

(Hψ,ψ) =
Rn
[−∆ψ + V (x)ψ]ψdx, ψ ∈ D(H).

We want to show that

(8.11) (Hψ,ψ) =
RN
[|∇ψ|2 + V (x)|ψ|2]dx, ψ ∈ D(H).

Identity (8.11) is obvious for ψ ∈ C∞0 (Rn). In general case we show
first that

(8.12)
Rn
[|∇ψ|2 + V (x)|ψ|2]dx <∞, ψ ∈ D(H).

Local elliptic regularity implies that if ψ ∈ D(H), then ψ ∈ H2
loc(Rn).

Hence, the integral in (8.12), with Rn replaced by each ball, is finite.
Let b ≤ inf V (x)− 1. Since ψ ∈ L2(Rn), inequality (8.12) is equivalent
to the following one:

Hb(ψ,ψ) = [|∇ψ|2 + (V (x)− b)|ψ|2]dx <∞,ψ ∈ D(H).

Finiteness of the quadratic form Hb(ψ,ψ) means that

(8.13) |∇ψ|2dx <∞, (1 + |V (x)|)|ψ|2dx <∞.
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The form Hb(ψ,ψ) is generated by an Hermitian form

Hb(ψ1,ψ2) = [∇ψ1∇ψ2 + (V (x)− b)ψ1ψ2dx,

which is finite provided ψ1 and ψ2 satisfy (8.13).

For ψ ∈ C∞0 (Rn) one has
(8.14) ((H − bI)ψ,ψ) = Hb(ψ,ψ).
Here the left-hand part is continuous with respect to the graph norm

( ψ 2 + Hψ 2)1/2.

on D(H). Hence, same is for Hb(ψ,ψ) and, by continuity, Hb is well-
defined on D(H).

We have an obvious inequality

ψ 2
1 ≤ Hb(ψ,ψ), ψ ∈ C∞0 (Rn),

where · 1 is the norm in H1(Rn). Therefore, convergence of elements
of C∞0 (Rn) with respect to the graph norm implies their convergence
in · 1. Since the space H1(Rn) is complete, it follows that ψ ∈ D(H)
implies ψ ∈ H1(Rn), i.e. ψ ∈ L2(Rn) and the first inequality in (8.13)
holds.

Similarly, the weighted L2space

L2(Rn, 1 + |V (x)|) = {ψ ∈ L2(Rn) :
Rn
(1 + V (x))|ψ(x)|2dx <∞}

is complete, which implies that ψ ∈ L2(Rn, 1 + |V (x)|) provided ψ ∈
D(H).

Thus, for every ψ ∈ D(H) satisfies (8.13) and (8.11) (which is equiva-
lent to (8.14)) follows by continuity.

2) Now we recall a version of Glazman’s lemma:

N(λ) = sup{dimL : L < D(H), (Hu, u) ≤ λ(u, u), u ∈ L},
where N(λ) = # eigenvalues below λ.

Thus, to prove the theorem we have to show that if a < a and L is a
subspace of D(H) (not necessary closed) such that

(8.15) (Hψ,ψ) ≤ a (ψ,ψ), ψ ∈ L,
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then L is finite dimensional.

Due to step 1), we can rewrite (8.15) as

(8.16)
RN
[|∇ψ|2 + (V (x)− a )|ψ|2]dx ≤ 0, ψ ∈ L.

Fix δ ∈ (0, a− a ) and R > 0 such that V (x) ≥ a + δ for |x| ≥ R. Let
M = − inf V (x). If C > 0 and C > M + a , then (8.16) implies
(8.17)

|x|≤R
|∇ψ|2dx+

|x|≥R
[|∇ψ|2 + δ|ψ|2]dx ≤ C

|x|≤R
|ψ|2dx,ψ ∈ L.

Let us consider an operator A : L→ L2(BR), A : ψ → ψ|BR , where BR
is the ball of radius R centered at 0. The space L is considered with
the topology induced form L2(Rn). Clearly, A is continuous. Inequality
(8.17) implies that kerA = {0}. Now it suffices to show that L̃ = AL
is a finite dimensional subspace of L2(BR). Clearly, L̃ ⊂ H1(BR) and,
due to (8.17),

ψ H1(BR) ≤ C1 ψ L2(BR), ψ ∈ L̃.

Therefore, the identity operator I in L̃ can be represented as a compo-
sition of the embedding L̃ ⊂ H1(BR) which is continuous, as we already
seen, and the embedding H1(BR) ⊂ L2(BR) which is compact. Thus,
I is a compact operator. Hence, L̃ is finite dimensional.

Remark 8.22. There exist various estimates for N−(H), the number of
negative eigenvalues of H. In the case n ≥ 3, the best known is the Lieb-
Cwikel-Rozenblum bound

N−(H) ≤ cn
Rn
|V−(x)|n/2dx,

where V−(x) = min[V (x), 0] and cn is a constant depending only on n.

8.3 Essential spectrum

Recall that σess(H) consists of all non-isolated points of σ(H) and eigenvalues
of infinite multiplicity. In other words, λ ∈ σess(H) if and only if the space
E(λ − ,λ + )H is infinite dimensional for all > 0. Here E(∆) is the
spectral projector associated with an interval ∆ ⊂ R.
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Theorem 8.23. Assume that V ∈ L∞loc(Rn) and lim|x|→∞ V (x) = 0. Then
σess(H) = [0,+∞).
Proof. By Theorem 8.20, σess(H)∩(−∞, 0) = ∅. Therefore, we have to prove
that [0,+∞) ⊂ σ(H).
Let λ ≥ 0. Then λ ∈ σ(H) if and only if there exists a sequence ϕp ∈

D(H) such that

lim
p→∞

(H − λI)ψp
ϕp

= 0.

To construct such a function we start with the following observation. The
function eik·x, |k| = √λ, satisfies the equation

−∆eik·x = λeik·x.

Therefore,
lim
|x|→∞

[−∆+ V (x)− λ]eik·x = 0.

Now let us fix a function χ ∈ C∞0 (Rn) such that χ ≥ 0, χ(x) = 1 if |x| ≤ 1/2,
and χ(x) = 0 if |x| ≥ 2. We set

χp(x) = χ(|p|−1/2(x− p)), p ∈ Zn.

Obviously,
suppχp ⊂ {x ∈ Rn : |x− p| ≤ |p|}.

Therefore,
lim
p→∞

sup
x∈suppχp

|V (x)| = 0.

Now we set
ϕp(x) = χp(x)e

ik·x, |k| =
√
λ.

First, we have

ϕp
2 = |χp(x)|2dx = pn/2 |χ(x)|2dx = Cpn/2,

where C > 0.
Next,

Hϕp = −(∆χp) · eik·x − (∇χp)(∇eik·x) + k2χpeik·x + V (x)χpeik·x.

Therefore,

(8.18) (H − λI)ϕp = e
ik·x[Hχp − ik ·∇χp].
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In addition,
|∇χp| ≤ C1|p|−1/2, |∆χp| ≤ C1|p|−1.

Hence, (8.18) implies that

lim
p→∞

sup
x∈Rn

|(H − λI)ϕp(x)| = 0.

However,

(H − λI)ϕp
2

ϕp 2
= C−1p−n/2 (H − λI)ψ 2

≤ C2p−n/2 · [meas(suppχp)]2 sup|(H − λI)ϕp(x)|2
≤ C3 sup|(H − λI)ϕp(x)|2 → 0,

and we conclude.

Under further assumptions on the potential on can prove the absence of
positive eigenvalues (with L2-eigenfunctions). The following result is due to
Kato.

Theorem 8.24. Let V ∈ L∞loc(Rn) and
lim
|x|→∞

|x|V (x) = 0.

Then H has no positive eigenvalues, i.e. if Hψ = λψ with λ > 0 and
ψ ∈ D(H), then ψ = 0.

Let us point out that λ = 0 may be an eigenvalue (not isolated).

Example 8.25. Let ψ ∈ C∞(Rn) be a function such that ψ(x) = |x|2−n if
|x| ≥ 1, and ψ(x) > 0 everywhere. Clearly, ψ ∈ L2(Rn) provided n ≥ 5.
Set V (x) = [∆ψ(x)]/ψ(x). Then V ∈ C∞0 (Rn) and ψ is an eigenfunction of
H = −∆+ V with the eigenvalue 0.
We mention now a general result on location of essential spectrum – the

so-called Persson theorem.

Theorem 8.26. Let V ∈ L∞loc(Rn) and V (x) ≥ −C. Then

inf σess(H) = sup[inf{(H,ψ,ψ)
ψ 2

: ψ ∈ C∞0 (Rn \K),ψ = 0}],

K runs over all compact subsets of Rn.

Remark that here infimum is exactly the bottom of the spectrum of −∆+
V (x) in L2(Rn \ K) with the Dirichlet boundary condition. The proof can
be found in [4].
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8.4 Decay of eigenfunctions

As usual, we assume here that V ∈ L∞loc(Rn) and V (x) ≥ −C.
Theorem 8.27. Assume that

lim
x→∞

inf V (x) ≥ a.

Let ψ be an eigenfunction of H with the eigenvalue λ < a. Then for every
> 0 there exists C > 0 such that

(8.19) |ψ(x)| ≤ C exp[− a− λ−
2

|x|].

Corollary 8.28. If V (x)→ +∞ as |x|→∞, then
|ψ(x)| ≤ Cae−a|x|

for every a > 0.

Remark 8.29. Estimate (8.19) can be improved. In fact,

|ψ(x)| ≤ C2 exp[− (a− λ− )|x|].
Proof of Theorem 8.27. First recall some facts about fundamental solution
of −∆+ k2, i.e. a solution of

−∆Ek + k2Ek = δ(x).

There exists such a solution with the property that Ek ∈ C∞(Rn \ {0}) and
the asymptotic behavior

Ek(x) = c|x|−n−1
2 e−k|x|(1 +O(1)), x→∞,

where c > 0. Moreover, Ek is radially symmetric. In the case n = 3

Ek(x) = 1

4π(x)
e−k|x|.

Let ψ be a real valued eigenfunction

Hψ = λψ, λ < a.

For the sake of simplicity, let us assume that V is smooth enough for large
|x|. Then, due to the elliptic regularity, ψ is smooth for same x, i.e. ψ is a
classical solution. One has

∆(ψ2) = 2∆ψ · ψ + 2(∇ψ)2.
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Therefore,
−∆(ψ2) = 2(λ− V (x))ψ2 − 2(∇ψ)2.

Hence (add simply 2(b− λ)ψ2 to the both sides),

[−∆+ 2(b− λ)]ψ2 = −2(V (x)− b)ψ2 − 2(∇ψ)2.
We assume here that b < a and, hence, the right hand part is nonnegative
for |x| large enough.
Set

u(x) = ψ2 −MEk(x)
with k = 2(b− λ) (here λ < b < a). Choose R such that Ek(x) ≥ 0,
V (x) > b and ψ(x) is smooth for |x| ≥ R. Next choose M > 0 such that

u(x) < 0, |x| = R
(this is possible due to continuity of E(x) and ψ(x) on the sphere |x| = R).
Obviously

−∆u+ k2u = f ≤ 0, |x| ≥ R.
Here

f = −2(V (x)− b)ψ2 − 2(∇ϕ)2.
Set

u (x) =
Rn
u(x− y)ϕ (u)dy,

where ϕ (x) = −nϕ(x/ ), ϕ ∈ C∞0 (Rn), ϕ ≥ 0 and

Rn
ϕdx = 1.

Enlarging R, if necessary, we have

(−∆+ k2)u = f ≤ 0.
Since u ∈ L1(Rn), u (x)→ 0 as |x|→∞ (check this). Let

ΩR,ρ = {x : R ≤ |x| ≤ ρ}
and

Mρ( ) = max|x|=ρ
|u (x)|.

Clearly, u (x) < 0 if |x| = R and is small enough. By the maximum
principle, we have

u (x) ≤Mρ( ), x ∈ ΩR,ρ

Letting pρ→∞, we get u (x) ≤ 0, if |x| ≥ R. Passing to the limit as → 0,
we see that u(x) ≤ 0 if |x| ≥ R and this implies the required.
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Remark 8.30. Assume that the potential has a power growth of infinity:

V (x) ≥ c|x|α − c1,
where c > 0, c1 ∈ R and α > 0. Then for each eigenfunction ψ one has

|ψ(x)| ≤ C exp(−a|x|α2+1).
with some C > 0 and a > 0 [1].

8.5 Agmon’s metric

Let x ∈ Rn and ξ, η ∈ Rn (more precisely, we should consider ξ, η as tangent
vectors at x). For the sake of simplicity we assume that the potential V is
continuous. Define a (degenerate) inner product

ξ, η x = (V (x)− λ)+ ξ, η ,

where ·, · is the standard Euclidean inner product on Rn and u(x)+ =
max{u(x), 0}. This is the Agmon metric on Rn. Certainly, the Agmon metric
is degenerate and depends on V (x) and λ.
Let γ : [0, 1]→ Rn be a smooth path in Rn. We define the Agmon length

of γ as

LA(γ) =
1

0

γ (t) γ(t)dt,

where ξ x = ξ, ξ
1/2
x . More explicitly,

LA(γ) =
1

0

(V (γ|t|)− λ)1/2x γ (t) dt

where ξ is the standard Euclidean norm in Rn. A path γ is a geodesic if
it minimizes the length functional LA(γ).
Given a potential V and energy level λ, the distance between x, y ∈ Rn

in the Agmon metric is

ρλ(x, y) = inf{LA(γ) : γ ∈ Px,y},
where Px,y = {γ : [0, 1]→ Rn : γ(0) = x, γ(1) = y, γ ∈ C1([0, 1])}.
Exercise 8.31. ρλ is a distance function.

Exercise 8.32. ρλ(x, y) is locally Lipschitz continuous, hence, differentiable
a. e. in x and y. At the points where it is differentiable

|∇yρλ(x, y)| ≤ (V (y)− λ)+.
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Using Agmon metrics one can obtain an anisotropic estimate of decay
of eigenfunctions. For simplicity we will prove such an estimate in L2 form
only.

Theorem 8.33. Assume that V ∈ C(Rn) and V (x) ≥ −C. Suppose λ is an
eigenvalue of H and supp(λ − V (x))+ is a compact subset of Rn. Let ψ be
an eigenfunction with the eigenvalue λ. Then, for any > 0 there exists a
constant c > 0 such that

(8.20)
Rn
e2(1− )ρλ(x)|ψ(x)|2dx ≤ c

where ρλ(x) = ρλ(x, 0).

Remark 8.34. Our assumption on (λ− V )+ implies that λ < inf σess(H).
Lemma 8.35. Let f(x) = (1 − )ρλ(x), fα = f(1 + αf)−1,α > 0, and
ϕ ∈ H1(Rn) be such that

Rn
|V (x)ϕ(x)|2dx <∞

and
suppϕ ⊂ Fλ,δ = {x : V (x)− λ > δ}.

Then there exists δ1 > 0 such that

(8.21) Re
Rn
[∇(efαϕ)∇(e−fαϕ) + (V − λ)|ϕ|2]dx ≥ δ1 ϕ 2.

Proof. Direct calculation shows that the left-hand part of (8.2) is

Rn
[|∇ϕ|2 − |∇fα|2|ϕ|2 + (V − λ)|ϕ|2]dx ≥ (ϕ, (V − λ− |∇fα|2)ϕ2).

Next

|∇fα|2 = |∇f |2(1 + αf)−4 ≤ |∇f |2 = (1− )2|∇ρλ(x)|2
≤ (1− )(V (x)− λ)+.

Since suppϕ ⊂ Fλ,δ, one has V (x)− λ > δ on suppϕ. Thus

(8.22) (ϕ, (V − λ− |∇fα|2)ϕ) ≥ (ϕ, (V − λ)ϕ− (1− )(V − λ)+ϕ)

= (ϕ, (V − λ)ϕ− (1− )(V − λ)ϕ) = (ϕ, (V − λ)ϕ) ≥ δ(ϕ,ϕ).
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Lemma 8.36. Let η be a smooth bounded function such that |∇η| is com-
pactly supported and

ϕ = ηψ exp(fα),

where Hψ = λψ. Then

(8.23) Re
Rn
[∇(efαϕ)∇(e−fαϕ) + (V − λ)|ϕ|2]dx =

Rn
ξe2fα|ψ|2dx,

where ξ = |∇η|2 + 2 < ∇η,∇fα > η.

Proof. Since |fα(x)| ≤ 1, then efαϕ ∈ L2(Rn). One has

(8.24)
Rn
[∇(efαϕ)∇(e−fαϕ) + V |ϕ|2 − λ|ϕ|2]dx

=
Rn
[∇(e2fαηψ)∇(ηψ) + (V − λ)(e2fαηψ)(ηψ)]dx

=
Rn
[∇(e2fαη2ψ)∇ψ + (V − λ)(e2fαη2ψ)ψ]dx

+
Rn
[(∇(e2fαηψ)∇η)ψ − (e2fαηψ)∇η∇ψ]dx.

We used here the identity

∇(e2fαηψ)∇(ηψ = ∇(e2fαη2ψ)∇ψ + [∇(e2fαηψ)∇η]ψ − (e2fαηψ)∇η∇ψ.

Since Hψ = λψ, the first integral in the right since of (8.24) vanishes. Cal-
culating ∇(e2fαηψ), we obtain from (8.24)

(8.25)
Rn
[∇(efαϕ)∇(e−fαϕ) + V |ϕ|2 − λ|ϕ|2]dx

=
Rn
[2e2fαη(∇η ·∇fα)ψψ + e2fα(∇η ·∇η)ψψ

+ e2fαη(∇ ·∇ψ) · ψ − e2fαη(∇η ·∇ψ) · ψ]dx.

Taking the real part, we obtain the required.

Proof of Theorem 8.33. We set

Fλ,2δ = {x ∈ Rn : V (x)− λ > 2δ},(8.26)

Aλ,δ = {x ∈ Rn : V (x)− λ < δ}.(8.27)
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Choose, η ∈ C∞ such that η(x) = 1 on Fλ,2δ and η(x) = 0 on Aλ,δ. Clearly,
supp|∇η| is compact. Take f, fα and ϕ as before. By Lemmas 8.33 and 8.34,

(8.28)

δ1 ϕ 2 ≤ Re
Rn
[∇(efαϕ)∇(e−fαϕ) + (V − λ)|ϕ|2]dx

≤ |
Rn

ξe2fα|ψ|2dx| ≤ [ sup
x∈supp|∇η|

|ξe2fα|] ψ 2.

Since supp|∇η| = Rn \ (Fλ,2δ ∪Aλ,δ) is compact, one can pass to the limit as
α→ 0 in (8.28). Thus

(8.29) efαηψ 2 ≤ c ,

where c > 0 is independent of α ≥ 0. Now we can take α = 0 in (8.29).
Since supp|∇η| ∪Aλ,δ is compact, the integral

supp|∇η|∪Aλ,δ

e2f |ψ|2dx <∞.

Hence, due to (8.29)

Rn
e2(1− )ρλ(x)|ψ(x)|2dx ≤ [

{η(x)=1}
=

supp|∇η|∪Aλ,δ

]e2f |ψ|2dx ≤ c ,

with new c .

Remark 8.37. In fact, one can prove the following pointwise bound

|ψ(x)| ≤ c e−(1− )ρλ(x).
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9 Periodic Schrödinger operators

We consider now Schrödinger operators −∆ + V (x), where V is a periodic
function. That is, we assume that for some basis {ei} ⊂ RN

V (x+ ei) = V (x), i = 1, . . . , N.

Such operators appear,e.g., in solid state physics. More details can be found
in [8]. For classical theory of one-dimensional periodic operators see [3].

9.1 Direct integrals and decomposable operators

Let H be a separable Hilbert space and (M,µ) a σ-finite measure space.
Let H = L2(M,dµ,H ) be the Hilbert space of square integrable H -valued
functions. Now we rename this space by constant fiber direct integral and
write as

H =
⊕

M

H dµ.

If µ is a sum of point measures at points m1,m2, . . . ,mk, then each f ∈
L2(M,dµ,H ) is completely determined by (f(m1), f(m2), . . . , f(mk)) and,
in fact, H is isomorphic to the direct sum of k copies of H . In a sense,
L2(M,dµ,H ) is a kind of ”continuous direct sum”.
A function A(·) from M to L(H ) is called measurable if for each ϕ,ψ ∈

H the scalar valued function (ϕ, A(m)ψ) is measurable. L∞(m, dµ, L(H ))
stands for the space of such functions with

A ∞ = ess sup A(m) L(H ) <∞.

A bounded linear operator A in H is said to be a decomposable operator (by
means of direct integral) if there is an A(·) ∈ L∞(M,dµ, L(H )) such that

(Aψ)(m) = A(m)ψ(m).

We write in this case

A =
⊕

M

A(m)dµ(m).

The A(m) are called the fibers of A.
Notice that every A(·) ∈ L∞(M, dµ,L(H)) is associated with some de-

composable operator. Moreover,

A L(H) = A(·) ∞.
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In fact, we have an isometric isomorphism of the algebra L∞(M,dµ,L(H ))
and the algebra of all decomposable operators. L∞(M,dµ,C) is a natural
subalgebra of L∞(M, dµ, L(H )). Its image A consists of those decomposable
operators whose fibers are all multiples of the identity.

Proposition 9.1. A ∈ L(H) is decomposable iff A commutes with each
operator in A.
A function A(·) from M to the set of all (not necessary bounded) self-

adjoint operators in H is called measurable if the function (A(·) + iI)−1 is
measurable. Given such A(·), we define an operator A on H with domain

D(A) = {ψ ∈ H : ψ(m) ∈ D(A(m)) a. e. ;
M

A(m)ψ(m) 2dµ(m) <∞}

by
(Aψ)(m) = A(m)ψ(m)

We write

A =
⊕

M

A(m)dµ

Let us summarize some properties of such operators

Theorem 9.2. LetA =
⊕
M
A(m)dµ, where A(·) is measurable and A(m) is

self-adjoint for each m. Then:

(a) A is self-adjoint.

(b) For any bounded Borel function F on R

F (A) =
⊕

M

F (A(m))dµ.

(c) λ ∈ σ(A) if and only if for all > 0

M({m : σ(A(m)) ∩ (λ− ,λ+ ) = ∅}) > 0.

(d) λ is an eigenvalue of A if and only if

M({m : λ is an eigenvalue of A(m)}) > 0.

(e) If each A(m) has purely absolutely continuous spectrum, then so does
A.
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(f) Suppose that B =
⊕
M
B(m)dµ with each B(m) self-adjoint. If B is A-

bounded with A-bound a, then B(m) is A(m) bounded with A(m)-bound
a(m) ≤ a. If a < 1, then

A+B =
⊕

M

(A(m) +B(m))dµ

is self-adjoint on D(A).

We explain here only some points of the theorem.
(a) It is easy to verify that A is symmetric. So, by Proposition 8.2, we

need only to check that im(A± iI) = H. Let C(m) = (A(m) + iI)−1. C(m)
is measurable and C(m) ≤ 1 (prove it). Hence, C = ⊕

M
C(m)dµ is a well-

defined bounded operator. Let ψ = Cη, η ∈ H. Then, ψ(m) ∈ imC(m) =
D(A(m)) a. e. and

A(m)ψ(m) = A(m)C(m)η(m) ≤ η(m) ∈ L2(dµ)
(the last inclusion is not trivial!). So, ψ ∈ D(A). Moreover, (A + iI)ψ = η.
Similarly, one checks that im(A− iI) = H.
(c) Let P∆(A) be the spectral projector of A associated with an interval

∆. We know that P∆(A) = χδ(A), where χ∆(λ) is the characteristic function
of ∆. By (b), we have

P∆(A) =
⊕

M

P∆(A(m))dµ.

Now we need only to remark that λ ∈ σ(A) iff P(λ− ,λ+ )(A) = 0.
(d) Similar to (c).

9.2 One dimensional case

Consider the operator

H = − d

dx2
+ V (x),

where V (x) is a 2π-periodic function, V ∈ L∞(R). Let H = L2(0, 2π) and

H =
⊕

[0,2π)

H dθ

2π

Consider the operator U : L2(R)→ H defined by

(9.1) (Uf)θ(x) =
n∈Z

e−iθnf(x+ 2πn).
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U is well-defined for f ∈ C∞0 (R), since the sum is convergent. We have

2π

0

(
2π

0

|
n

e−inθf(x+ 2πn)|dx)dθ
2π

=
2π

0

[(
n j

f(x+ 2πn)f(x+ 2πj))
2π

0

e−i(j−n)θ
dθ

2π
]dx

=
2π

0

(
n

|f(x+ 2πn)|2)dx =
∞

−∞
|f(x)|2dx.

Thus, U has a unique extension to an isometric operator.
Next, we show that U is a unitary operator. By means of direct calcula-

tion we see that

(U ∗g)(x+ 2πn) =
2π

0

einθgθ(x)
dθ

2π

for g ∈ H. It is also not difficult to verify that U∗g 2 = g 2.
The operator U is the so-called Floquet transform.
Denote by L the self-adjoint operator in L2(R) generated by−d2/dx2. For

θ ∈ [0, 2π) we consider the self-adjoint operator Lθ in L
2(0, 2π) generated by

−d2/dx2 with the boundary conditions
ψ(2π) = eiθψ(0),ψ (2π) = eiθψ (0).

We have

(9.2) ULU−1 =
⊕

[0,2π)

Lθ
dθ

2π
.

Let A be the operator on the right-hand side of (9.2). We shall show that
if f ∈ C∞0 (R), then Uf ∈ D(A) and U(−f ) = A(Uf). Since −d2/dx2 is
essentially self-adjoint on C∞0 and A is self-adjoint, (9.2) will follow.
So, suppose f ∈ C∞0 (R). Then Uf is given by the convergent sum (9.1).

Hence, Uf ∈ C∞ on (0, 2π) with (Uf)θ(x) = (Uf )θ(x) (similarly for higher
derivatives). Moreover,

(Uf)θ(2π) =
n

e−iθnf(2π(n+ 1)) =
n

e−iθ(n−1)f(2πn) = eiθ(Uf)θ(0).

Similarly, (Uf) (2π) = eiθ(Uf) (0). Thus, for each θ, (Uf) ∈ D(Lθ) and

Lθ(Uf) = U(−f )θ.
Hence, Uf ∈ D(A) and A(Uf) = U(−f ).
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Now let
Hθ = Lθ + V (x)

considered as an operator in L2(0, 2π)

Theorem 9.3.

UHU−1 =
⊕

[0,2π)

Hθ
dθ

2π

Proof. In view of (9.2), it is enough to show that

UV U−1 =
⊕

[0,2π)

Vθ
dθ

2π
,

where Vθ is an operator (θ-independent) on the fiber L
2(0, 2π) defined by

(Vθf)(x) = V (x)f(x), x ∈ (0, 2π).

One has

(UV f)θ(x) =
n

e−inθV (x+ 2πn)f(x+ 2πn)

= V (x)
n

e−inθf(x+ 2πn) = Vθ(Uf)θ(x).

Thus, we conclude.

Now we remark that the operator Lθ + I is invertible. The inverse Kθ =
(Lθ + I)

−1 can be found explicitly:

(Kθu)(x) =
2π

0

Gθ(x, y)u(y)dy,

where

Gθ(x, y) =
1

2
e−|x−y| + α(θ)ex−y + β(θ)ey−x,

α(θ) =
1

2
(e2π−iθ − 1)−1,

β(θ) =
1

2
(e2π−iθ − 1)−1.

This implies that Kθ is compact and depends analytically on θ in a neigh-
borhood of [0, 2π].
Since Lθ depends analytically on θ, so does Hθ. Moreover, Hθ has a

compact resolvent. Hence, the spectrum of Hθ is discrete and consists of
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eigenvalues λ1(θ) ≤ λ2(θ) ≤ . . .. Due to Theorem 9.2(c), we see that σ(H)
is a union of intervals

[inf λk(θ), supλK(θ)]

(this is the so-called band structure of spectrum). Since H is bounded below,
σ(H) the complement of the union intervals (−∞, a0), (a1, b1), (a2, b2), . . .,
with bi < ai+1. Finite intervals (a1, b1), i ≥ 1, are called spectral gaps.
One can prove similar results in multidimensional case as well. However,

in one dimensional case one can obtain much more information.
First, remark that H(θ) and H(2π − θ) are antiunitary equivalent under

complex conjugation. Therefore λk(θ) = λk(2π−θ). Next, one can prove that
eigenvalues λk(θ), θ ∈ (0, π), are nondegenerate, hence, depend analytically
on θ ∈ (0,π). In fact, λk(θ) can be analytically continued through θ = 0 and
θ = π. However, such the continuation may coincide with λn+1(θ) or λn−1(θ)
if λ(θ) (resp. λ(π)) is a double eigenvalue (only double degeneration may
occur).
Moreover, for k odd (resp. even) λn(θ) is strictly monotone increasing

(resp. decreasing) on (0,π). Therefore,

λ1(0) < λ1(π) ≤ λ2(π) < λ2(0) ≤ . . .
≤ λ2n−1(0) < λ2n−1(π) ≤ λ2n(π) < λ2n(0) ≤ . . .

Intervals (bands) [λ2n−1(0),λ2n−1(π)] and [λ2n(π),λ2n(0)] form the spectrum.
They can touch, but cannot overlap. In 1-dimensional case the following is
also known:

(a) If no gaps are present, then V = const.

(b) If precisely one gap opens up, then, V is a Weierstrass elliptic function.

(c) If all odd gaps are absent, then V is π-periodic.

(d) If only finitely many gaps are present, then V is a real analytic function.

(e) In the space of all 2π-periodic C∞ functions the set of potentials V , for
which all gaps are open, is a massive (hence, dense) set.

9.3 Multidimensional case

Consider the operator H = −∆ + V (x) on RN . V (x) is 2π-periodic in
xi, i = 1, . . . , N, V ∈ C(RN) (for the sake of simplicity), V (x) ≥ −C. In this
case one can define the Floquet transform

(Uf)θ(x) =
n∈ZN

e−iθ·nf(x+ 2πn),
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where θ ∈ [0, 2π)N , x ∈ (0, 2π)N . The operator Lθ in L
2((0, 2π)N ) is now

defined as −∆ with boundary conditions

ψ(x1, . . . , xk−1, 2π, xk+1, . . . , xN ) = eiθkψ(x1, . . . , xk−1, 0, xk+1, . . . , xN)

ψ (x1, . . . , xk−1, 2π, xk+1, . . . , xN ) = eiθkψ (x1, . . . , xk−1, 0, xk+1, . . . , xN).

Another way is to consider Lθ on the subspace of L
2
loc(RN) that consists of

functions satisfying Bloch condition

ψ(x+ 2πn) = eiθ·nψ(x), n ∈ ZN .
The Floquet transform again decomposesH and gives rise to a band structure
of the spectrum. However, Hθ may have multiple eigenvalues and the bands
may overlap, in contrast to 1-dimensional case. Under some not so restrictive
assumptions on V it is known that, in the case N = 2, 3, a generic H can have
only a finite number of gaps. This is also in the contrast to 1-dimensional
case.
Nevertheless, in all dimensions the spectrum of H is absolutely continu-

ous.
Now let us discuss the so-called integrated density of states. First consider

the spectral function e(λ;x, y). The spectral projector Eλ turns out to be an
integral operator. Its kernel function e(λ;x, y) is just the spectral function
of H. In the case of interest e(λ; ·, ·) is a continuous function on RN × RN .
Moreover, it is periodic along the diagonal, i. e.

e(λ; x+ 2πn, y + 2πn) = e(λ;x, y).

By definition, the integrated density of states N(λ) is the mean value of
e(λ;x, x), i.e.

N(λ) =
1

measK K

e(λ; x, x)dx,

where K = [0, 2π]N . N(λ) is a nondecreasing function which is equal to zero
for λ < inf σ(H) and constant on each gap of the spectrum. Moreover, σ(A)
coincides with the set of growth points of N(λ).
One can express N(λ) in terms of band functions λk(θ):

N(λ) = (2π)−N
∞

k=1

meas{θ ∈ K : λk(θ) ≤ λ} = (2π)−N
K

Nθ(λ)dθ.

Here Nθ(λ) is the ordinary distribution function for the discrete spectrum of
Hθ,

Nθ(λ) = # eigenvalues of Hθ below λ.
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If V = 0, then
N(λ) = (2π)−NvNλN/2θ(λ),

where vN is the volume of unit ball in RN and θ(λ) is the Heaviside function.
One can give another description of N(λ) as follows. Let

Ωn = {x ∈ RN : |xj| ≤ πn, j = 1, . . . , N}.
Consider the operator Hn defined on Ωn by −∆+V (x) with periodic bound-
ary conditions (precisely, 2πn-periodic). The operator Hn is self-adjoint in
L2(Ωn) and has discrete spectrum. Denote by Nn(λ) the ordinary distribu-
tion function for eigenvalues of Hn. Then

(9.3) N(λ) = lim
n→∞

1

measΩn
Nn(λ).

Moreover, let Gn(t, x, y) be the Green function of parabolic operator ∂/∂t−
Hn on (0,∞) × Ωn with periodic boundary conditions and G(t, x, y) the
fundamental solution of the Cauchy problem for ∂/∂t −H. One can verify
that

G(t, x+ 2πk, y + 2πk) = G(t, x, y), k ∈ ZN .
Consider the Laplace transforms of N and Nn:

Ñ(t) =
∞

−∞
e−λtdN(λ), t > 0,

Ñ(t) =
∞

−∞
e−λtdNn(t), t > 0.

Then

Ñn(t) =
1

measΩn Ωn

Gn(t, x, x)dx,

Ñ(t) =
1

measK K

G(t, x, x)dx =:Mx(G(t, x, x))

and ÑN (t)→ Ñ(t).

9.4 Further results

Consider the case of almost periodic (a. p.) potential. A bounded continuous
function f(x) is said to be almost periodic if the set of its translations {f(·+
y)}y∈RN is precompact in the space Cb(RN ) of bounded continuous functions.
The mean value of such f is defined by

M(f) = lim
R→∞

1

RN |xj |≤R/2
f(x)dx.

107



(The existence of the limit here is a deep theorem). Denote by CAP (RN )
the space of all such functions.
If V ∈ CAP (RN), then −∆ + V is essentially self-adjoint operator in

L2(RN ). Let H be the corresponding self-adjoint operator.
Let us consider another operator generated by −∆+ V (x). In the space

CAP (RN) we introduce an inner product (f, g)B =M(f ·g) and correspond-
ing norm · B (one can show that f B = 0, f ∈ CAP (RN ), implies that
f = 0.) The space CAP (RN) is incomplete with respect to this norm. The
completion B2(RN) is called the space of Besicovitch a. p. functions. It turns
out to be that −∆+V (x) generates (in a unique way) a self-adjoint operator
HB in B

2(RN ). A deep theorem by M. Shubin states that σ(H) = σ(HB).
Remark that the structure of these two spectra is different. For example, −∆
has continuous spectrum in L2(RN ), but purely point spectrum in B2(RN):
each function eiξ·x is an eigenfunction of −∆ in B2(RN ) with the eigenvalue
|ξ|2.
In a. p. case the structure of spectrum become much more complicated,

than in periodic case. In particular, we cannot introduce band functions. Let
us discuss only few results in this direction. Recall that a perfect Cantor set
(not necessary of measure 0) is a closed subset of R without isolated points,
the complement of which is everywhere dense in R. A limit periodic function
is a uniform limit of periodic functions (of different periods).

Theorem 9.4. In the space of all limit periodic functions (with the standard
sup-norm) on R there exists a massive (hence, dense) set consisting of po-
tentials V such that the spectrum σ(H) of H = −d2/dx2 + V (x) is a perfect
Cantor set. The same is true in the space of potentials of the form

V (x) =
∞

n=0

an cos
x

2n
, |an| <∞.

This theorem was obtained by Avron and Simon. Moreover, one can find
a dense set of limit periodic potentials such that σ(H) is a perfect Cantor
set and the spectrum is absolutely continuous of the multiplicity 2.
However, the spectrum does not always have to be absolutely continu-

ous. Chulaevskii and Molchanov demonstrated that there are limit periodic
potentials with pure point Cantor spectrum of Lebesgue measure 0. Corre-
sponding eigenfunctions decay faster than any power of |x| as |x|→∞, but
not exponentially! In some cases the spectrum is purely point with expo-
nentially decaying eigenfunctions. The last phenomenon is called Anderson
localization and is more typical for random operators.
Let us finish our discussion with considering of integrated density of

states. Again one can consider the spectral function e(λ;x, y). This function
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is almost periodic along the diagonal, i.e. e(λ : x+z, y+z) is a. p. in z ∈ RN ,
uniformly with respect to x, y ∈ RN . Now we set

N(λ) =Mx(e(λ; , x, x)),

whereMx is the mean value of an a. p. function. One can also extend formula
(9.3). Let Ωn be a sequence of smooth bounded domains which blow up in
a ”regular” way, e.g., Ωn is a ball of radius n centered at the origin. Let
Hn be the operator generated by −∆ + V (x) on Ωn with some self-adjoint
(e.g., Dirichlet or Neumann) boundary condition and Nn(λ) the distribution
function for eigenvalues of Hn. Then

N(λ) = lim
n→∞

1

measΩn
Nn(λ).

Again, for the Laplace transform of N(λ) one has

Ñ(t) =Mx(G(t, x, x)),

where G(t, x, x) is the fundamental solution of Cauchy problem for ∂/∂t−H.
This function is now a. p. along the diagonal.
For details we refer the reader to [7], [13] and references therein.

9.5 Decaying perturbations of periodic potentials

Consider the operator H = −∆+ V (x) with a potential of the form
V (x) + V0(x) + V1(x),

where V0(x) is periodic and V1(x) decays at infinity (we do not specify here
precise assumptions). The operator H can be considered as a perturbation
of the operator H0 = −∆+ V0(x). As we already know, the spectrum σ(H0)
is absolutely continuous (at least, for continuous potentials) and may have
gaps. If the perturbation V1(x) decays sufficiently fast, the multiplication by
V1(x) is a ∆-compact (hence, H0-compact) operator. This means ([8], vol. 4)
that V1(−∆+1)−1 and V1(H0+α)−1, with α > 0 large enough, are compact
operators. It is known [8] that an essential spectrum is staple under relatively
compact perturbations. Therefore, σess(H) = σess(H0) = σ(H0)). However,
the perturbation V1(x) may introduce eigenvalues of finite multiplicity below
the essential spectrum and/or into spectral gaps. Typically, corresponding
eigenfunctions decay exponentially fast. See a survey [2].
Now we want to point out the following question. Is it possible thatH has

eigenvalues which belong to σess(H) = σ(H0)? Such eigenvalues are called
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embedded eigenvalues. If V0(x) ≡ 0, then Theorem 8.24 shows that there
are no positive eigenvalues. The point 0 may be an eigenvalue in the case
N > 1. So, in higher dimensions we should justify our question as follows:
can an interior point of the spectrum be an eigenvalue? In general case not
so much is known. On the contrary, if N = 1 the situation is quite clear: if
(1 + |x|)V1(x) ∈ L1(R), then embedded eigenvalues cannot appear [9], [10]
(this result is not trivial!). Moreover, the last works contain results on the
number of eigenvalues introduced into spectral gaps. For instance, far gaps
cannot contain more than two eigenvalues.
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Birkhäuser, Basel, 1993.

[6] J. L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems
and Applications, Springer, Berlin, 1972.

[7] L. Pastur, A. Figotin, Spectra of Random and Almost-Periodic Opera-
tors, Springer, Berlin, 1992.

[8] M. Reed, B. Simon, Methods of Modern Mathematical Physics, I—IV,
Acad. Press, New York, 1980, 1975, 1979, 1978.

[9] F. S. Rofe-Beketov, A test for finiteness of the number of discrete levels
introduced into the gaps of a continuous spectrum by perturbation of a
periodic potential, Soviet Math. Dokl., 5 (1964), 689—692.

[10] F. S. Rofe-Beketov, A. M. Khol’kin, Spectral Analysis of Differential
Operators, Mariupol’, 2001 (in Russian).

[11] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.

[12] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.

[13] M. A. Shubin, Spectral theory and index of elliptic operators with
almost-periodic coefficients, Russ. Math. Surveys, 34 (1979), 109—157.

[14] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982),
447—526.

111


