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Abstract

We characterize the class of convex functionals that are asymptotically well
behaved on a given convex set, instead of the whole space, by use of restriction
functions. For subsets of (infinite) inequality system, the sequential stationarity
becomes a Kuhn-Tucker system partially approximated. However, relaxing the
condition of complementarity, we show that it does not change the class. Appli-
cation to a new interior penalty method, penalizing the infinite inequalities, is
given to illustrate the relevance of this result.

1 Introduction

The stationary sequences for convex functionals are reconsidered and investigated in
[3] to remedy the question of unbounded sequences, those precisely having no cluster
points when they are generated by a certain algorithm conceived to solve problems
of optimization. Convexity is not sufficient to ensure that such sequences are mini-
mizing. In fact, the quality of good asymptotic behavior is needed. There has been
characterized a large class of closed convex functions having the property that every
stationary sequence is minimizing, the so-called asymptotically well behaved functions
(see [2, 3, 4]). Besides the inf-compact functions, the class contains functions that are
not inf-compact. This constitutes an extension of the Palais-Smale condition in a sense
that no limit points of the stationary sequences are required. The characteristic con-
dition is obtained with the help of sublevel sections strictly above the infimum. Then,
dual characterizations more easily checkable were obtained (e.g., [2, 6]). In [14, 15]
are established some important links with the well-known concepts of conditioning and
well-posedness. Several applications enlarging the scope of convergence for certain clas-
sical numerical methods in unbounded cases can also be found (e.g., [1], [2] and [3]).
In [2], the convergence of the quadratic exterior penalty method was obtained via new
Fenchel duality results for a subclass where, by definition, the stationary sequences not
only are minimizing but also converge towards the optimal set assumed to be nonempty.
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The purpose of this paper is that the good asymptotic behavior concept may also be
taken over a convex subset instead of the whole space, in a sense that, every stationary
sequence of a restricted convex function is minimizing over the restriction set. In
instance of mathematical programming sets, the sequential stationarity while made
explicit, leads to a KT system only partially approximated. The first result is that,
we can weaken asymptotically the complementarity condition without modifying the
good behavior at the infinity. The class thus remains intact. Then we introduce a
new version of the logarithmic interior penalty method, actually penalizing infinitely
many inequalities, and prove its convergence for this broad class, so that, the produced
sequences even having no limit point are minimizing over such constraints.

2 Definitions and Preliminaries

Let X be a reflexive Banach space. For a convex function f : X → R ∪ {+∞}, let us
recall the following sets of convex analysis:

• dom f = {x ∈ X : f(x) ∈ R} its effective domain,

• Xλ(f) = {x ∈ X : f(x) ≤ λ} its sublevel set at height λ ∈ R,

• ∂f(x̄) = {c ∈ X∗ : f(x) ≥ f(x̄)+ 〈c, x− x̄〉, ∀x ∈ X} its subdifferential at a point
x̄ ∈ dom f (by convention ∂f(x̄) = ∅ for x̄ 6∈ dom f), where 〈·, ·〉 stands for the
duality scalar product between X and its topological dual X∗,

• Γ0(X) = {f : X → R ∪ {+∞} that are convex, proper and l.s.c}.

A sequence (xn) ⊂ X is said to be stationary (for f) if d(0, ∂f(xn)) → 0. Following
[3], by definition f ∈ Γ0(X) has a good asymptotic behavior (on X) if every stationary
sequence is minimizing, i.e., for (xn) ⊂ X,

d(0, ∂f(xn)) → 0 ⇒ f(xn) → inf
X
f(x).

This broad class of functions, denoted by F , includes functions that are not inf-
compact and do not attain their infima eventually, and has the following characteriza-
tion.

THEOREM 1 ([2] or [3]).

F = {f ∈ Γ0(X) : rλ(f) > 0, ∀λ > inf
X
f(x)}

= {f ∈ Γ0(X) : lλ(f) > 0, ∀λ > inf
X
f(x)}

where the parameters rλ(f) and lλ(f) are defined for each scalar λ > infX f(x) by:

rλ(f) = inf
f(x)=λ

d(0, ∂f(x)), lλ(f) = inf
f(x)>λ

f(x) − λ

d(x,Xλ(f))
.

It is quite natural to define the previous concept on a subset as follows. Denote
first by f|S the restriction of f : X → R ∪ {+∞} over the subset S ⊆ X, defined for
all x ∈ X by:

f|S(x) =

{
f(x) if x ∈ S ∩ dom f

+∞ otherwise
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DEFINITION 1. f ∈ Γ0(X) has a good asymptotic behavior on a nonempty closed
convex subset S ⊆ X if f|S ∈ F , i.e., S ∩ dom f 6= ∅ and for (xn) ⊂ X,

d(0, ∂f|S(xn)) → 0 ⇒ f(xn) → inf
S
f(x).

Throughout the paper we shall denote by FS the class of such functions. Then FX = F .

REMARK 1. Let us note firstly that

1. f|S = f+δS where δS : X → R∪{+∞} is the indicator function of S. Obviously,
with S nonempty convex closed and f ∈ Γ0(X), f|S ∈ Γ0(X) iff S ∩ dom f 6= ∅.

2. d(0, ∂f|S(xn)) → 0 means that ∀n, ∃cn ∈ ∂f|S(xn) : ‖cn‖ → 0. In this case, we
must have xn ∈ S ∩ dom f (∀n) otherwise ∂f|S(xn) = ∅. So f|S(xn) = f(xn).

So it suffices to apply Theorem 1 to the function f + δS (using Remark 1) to obtain
the characterization of the class FS in the general case of implicit subsets.

COROLLARY 1.

FS = {f ∈ Γ0(X) |S ∩ dom f 6= ∅ : rλ(f|S) > 0, ∀λ > inf
S
f(x)}

= {f ∈ Γ0(X) |S ∩ dom f 6= ∅ : lλ(f|S) > 0, ∀λ > inf
S
f(x)}

where the parameters rλ(f|S) and lλ(f|S) are given for each real λ > infS f(x) by:

rλ(f|S) = inf
f(x)=λ

x∈S

d(0, ∂(f + δS)(x)), lλ(f|S) = inf
f(x)>λ

x∈S

f(x) − λ

d(x, Sλ(f))

and Sλ(f) = {x ∈ S : f(x) ≤ λ} is as usual the λ-sublevel set of f restricted to S.

3 The Explicit Case of Mathematical Programming

We henceforth assume that the set S is of mathematical programming form:

S = {x ∈ X : G(x) ∈ −Y+} (1)

where G : X → Y ∪ {+∞} taking values in Y a Banach space equipped with a partial
order induced by a closed convex cone Y+ ⊂ Y : ∀y, y′ ∈ Y ,

y ≤Y+ y′ ⇔ y − y′ ∈ −Y+.

Then S can be rewritten with G(x) ≤Y+ 0. The element +∞ is adjoined to Y to be
its greatest element: ∀y ∈ Y , y ≤Y+ +∞. The effective domain of the vector mapping
G is defined by domG = {x ∈ X : G(x) ∈ Y }. The vector mapping G is said to be

• Y+-convex, if

∀x, x′ ∈ X, ∀α ∈ [0, 1], G(αx+ (1 − α)x′) ≤Y+ αG(x) + (1 − α)G(x′),

• sequentially Y+-l.s.c at x̄ ∈ X, if

∀y ≤Y+ G(x̄), ∀(xn) → x̄, ∃(yn) → y : yn ≤Y+ G(xn), ∀n ∈ N.
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Sequential Y+-l.s.c (at every x̄ ∈ X) easily implies that the epigraph and sublevel sets
are closed; the converse fails [7]. In particular if G is sequentially Y+-l.s.c then S is
closed. In a metrizable space, in particular the Banach spaceX, sequential R+-l.s.c is no
more than the classical l.s.c, and then by definition, sequential R

m
+ -l.s.c also becomes

equivalent to l.s.c of the components. We shall adopt for such a vector mapping a
similar notation to a scalar function:

Γ0(X, Y ) = {G : X → Y ∪ {+∞} Y+-convex proper sequentially Y+-l.s.c}.

A composite function ψ ◦ ϕ : X → R ∪ {+∞} is defined by (ψ ◦ ϕ)(x) = ψ(ϕ(x)) if
x ∈ domϕ and +∞ otherwise, and its domain is therefore

dom(ψ ◦ ϕ) = domϕ ∩ ϕ−1(domψ). (2)

The following formula was established in [7, pp.135]: Let f ∈ Γ0(X), G ∈ Γ0(X, Y )
be such that the following qualification condition of Attouch-Brézis type is satisfied:

(AB) R+[Y+ +G(dom f ∩ domG)] is a closed vector subspace of Y.

Then for all x̄ ∈ S ∩ dom f ,

∂f|S(x̄) =
⋃

µ∈Y ∗
+

〈µ,G(x̄)〉=0

∂L(x̄, µ) (3)

where Y ∗
+ = {µ ∈ Y ∗ : 〈µ, y〉 ≥ 0, ∀y ∈ Y+} is the (positive) polar cone of Y+. In fact

in [7], f|S = f + δ−Y+ ◦G and L(., µ) = f + µ ◦G the well-known Lagrangian.

REMARK 2. The above formula well known before [13], actually requires a con-
straint qualification weaker than the Slater condition “∃a ∈ dom f, G(a) ∈ − intY+”.
Indeed, the latter easily implies that R+[Y+ +G(dom f ∩ domG)] = Y . Furthermore,
the condition (AB) ensures that 0 ∈ C = Y++G(dom f∩domG), that is, S∩dom f 6= ∅.
Indeed, observe that for any nonempty convex set C, the set R+C is a vector space if
and only if ]0,+∞[C is a vector space. Thus 0 ∈ C.

It is now easy to verify that for f ∈ Γ0(X) and G ∈ Γ0(X, Y ) under (AB) condition,
(xn) ⊂ X is a stationary sequence for f|S iff it is of Kuhn-Tucker type:

(KT )





there exists a sequence (µn) ⊂ Y ∗
+ of Lagrange multipliers such that,

d(0, ∂L(xn, µn)) → 0 (asymptotic Lagrangian stationarity)
〈µn, G(xn)〉 = 0 (∀n) (complementarity)
G(xn) ∈ −Y+ (∀n) (feasibility)

Let us relax asymptotically the complementarity condition:

(K̃T )





there exists a sequence (µn) ⊂ Y ∗
+ of Lagrange multipliers such that,

d(0, ∂L(xn, µn)) → 0 (asymptotic Lagrangian stationarity)
〈µn, G(xn)〉 → 0 (asymptotic complementarity)
G(xn) ∈ −Y+ (∀n) (feasibility)

The property that every bounded stationary sequence is minimizing, may fail with
ones unbounded, as shown by the counter-example below.
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EXAMPLE 1. It has been shown in [3] that the function f ∈ Γ0(R
2) defined by

f(x1, x2) =
x2
1

x2
if x2 > 0, = 0 if x1 = x2 = 0, +∞ elsewhere, has a bad asymptotic

behavior on R
2. We show that it still has this behavior on S = {(x1, x2) ∈ R

2 : x2 ≥ 1}.
Indeed, xn = (n, n2) is not minimizing for f over S because f(xn) = 1 6→ 0 = infS f(x).

But it is (K̃T ) (resp. (KT )) stationary taking µn = 1
n3 (resp. µn = 0):

{
f ′(xn) + µnG′(xn) = ( 2

n
, −1

n2 + −1
n3 ) → (0, 0),

µnG(xn) = 1
n3 (1 − n2) → 0.

Given S defined by (1) with G ∈ Γ0(X, Y ), we consider the following two classes:

FAB
S = {f ∈ Γ0(X) satisfying (AB) : every (KT ) sequence is minimizing for f|S },

F̃AB
S = {f ∈ Γ0(X) satisfying (AB) : every (K̃T ) sequence is minimizing for f|S }.

Then it is immediate that

F̃AB
S ⊆ FAB

S = FS ∩ {f ∈ Γ0(X) satisfying (AB)}. (4)

As mentioned before, the class FAB
S is in fact unchanged after the relaxation:

THEOREM 2.
F̃AB

S = FAB
S .

PROOF. According to (4), it remains to show the converse inclusion. Let f ∈

FAB
S and suppose f 6∈ F̃AB

S . Then we may find (xn) a (K̃T ) stationary sequence
not minimizing f|S . Hence we may find µn ∈ Y ∗

+ and cn ∈ ∂L(xn, µn) for each n,
% > infS f(x) and λ ∈ f(S) such that:





‖cn‖ → 0,
〈µn, G(xn)〉 → 0,
G(xn) ∈ −Y+ for all n,
infS f(x) < λ < % ≤ f(xn) for infinitely many n.

Since f ∈ FAB
S , by (4) and Corollary 1, for such λ, we have lλ(f|S) > 0. Let pn be a

projection of xn over Sλ(f) (defined in Corollary 1) which is a nonempty closed convex
subset of the reflexive Banach space X. Hence ‖xn − pn‖ = d(xn, Sλ(f)), f(pn) ≤ λ

and G(pn) ∈ −Y+, and then, we have

〈cn, xn − pn〉 ≥ L(xn, µn) − L(pn, µn) ≥ f(xn) − λ+ 〈µn, G(xn)〉.

So dividing these inequalities by f(xn) − λ, we obtain for infinitely many n,

‖cn‖
1

lλ(f|S)
≥ ‖cn‖

‖xn − pn‖

f(xn) − λ
≥ 1 + 〈µn, G(xn)〉

1

f(xn) − λ
.

Since ( 1
f(xn)−λ

) is bounded, by letting n↗ +∞, we get the contradiction 0 ≥ 1.

REMARK 3. The parameter rλ(f|S) of Corollary 1 can be given explicitly via (3):

rλ(f|S) = inf
f(x)=λ

x∈S

inf { ‖c‖ : c ∈
⋃

〈µ,G(x)〉=0

µ∈Y ∗
+

∂L(x, µ) } = inf
f(x)=λ

G(x)∈−Y+
〈µ,G(x)〉=0

µ∈Y ∗
+

d(0, ∂L(x, µ)).
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4 Interior Penalty Method

Consider the oriented distance [12] defined for the closed convex cone −Y+ by:

∆−Y+(y) = d(y,−Y+) − d(y, Y \ −Y+).

This function is convex positively homogeneous, 1-Lipschitzian, Y+-nondecreasing
and characterizes the boundary, interior and complementary of −Y+:

∂(−Y+) = {y ∈ Y : ∆−Y+(y) = 0}, int(−Y+) = {y ∈ Y : ∆−Y+(y) < 0},

Y \ (−Y+) = {y ∈ Y : ∆−Y+(y) > 0}.

It is also known [11] that the function ∆−Y+ is simply given for all y ∈ Y by:

∆−Y+(y) = sup
µ∈Y ∗

+, ‖µ‖=1

〈µ, y〉. (5)

The feasible set S defined by (1) can now be written under scalarized form:

S = {x ∈ X : ∆−Y+(G(x)) ≤ 0}.

The classical logarithmic penalty function applied with f over S becomes:

fn = f − rn ln ◦(−∆−Y+ ◦G), rn ↘ 0+.

Standard theorem for this penalization applies under the classical hypotheses of
(inf-)compactness type. We shall extend the convergence for the class FAB

S .
The result below is needed.

THEOREM 3. [7] Let Z be a topological vector space ordered by a convex cone
Z+, f : X → R ∪ {+∞} be convex proper, H : X → Z ∪ {+∞} be Z+-convex proper,
g : Z → R ∪ {+∞} be convex proper Z+-nondecreasing and one of the following
qualification conditions (resp. of Moreau-Rockafellar and Attouch-Brézis type) hold:

{
X,Z are locally convex spaces,
g is finite and continuous at some point of H(dom f ∩ domH),

or, {
X,Z are Fréchet spaces, H is sequentially Z+-l.s.c,
R+[domg −H(dom f ∩ domH)] is a closed vector subspace of Z.

Then ∀x̄ ∈ X,

∂(f + g ◦H)(x̄) =
⋃

µ∈∂g(H(x̄))

∂(f + µ ◦H)(x̄).

We derive the same result in concordance with our data.

REMARK 4. The above formula still holds if we assume that g is Z+-nonincreasing
and H : X → Z ∪ {−∞} is Z+-concave sequentially Z+-u.s.c. It suffices to apply
Theorem 3 to the functions g ◦ −IdZ (IdZ is the identity mapping) and −H (instead
of g and H) observing that

∂(g ◦ −IdZ)(−H(x̄)) = −∂g(H(x̄)).
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Recall for ψ : Y → R ∪ {+∞} convex proper and y ∈ domψ, the Young-Fenchel’s
equality:

y∗ ∈ ∂ψ(y) ⇐⇒ ψ(y) + ψ∗(y∗) = 〈y∗, y〉 (6)

the function ψ∗ : Y ∗ → R∪{+∞} being the Legendre-Fenchel’s conjugate of ψ defined
by ψ∗(y∗) = supy∈Y {〈y∗, y〉−ψ(y)}. We have that ψ∗∗ = ψ if ψ ∈ Γ0(Y ) (see e.g. [5]).

The symbol “co” will stand for the convex hull and B for the closed unit ball.

LEMMA 1. For the convex cone Y+ (not necessarily closed here), we have that

1. ∆∗
−Y+

= δco(Y ∗
+∩∂B),

2. ∂∆−Y+(ȳ) = {µ ∈ Y ∗ : 〈µ, ȳ〉 = ∆−Y+(ȳ), µ ∈ co(Y ∗
+ ∩ ∂B)} for all ȳ ∈ Y .

PROOF. 1. By (5) (which holds for any convex cone) we have for every y ∈ Y ,

∆−Y+(y) = sup
µ∈Y ∗

+∩∂B

〈µ, y〉 = sup
µ∈co(Y ∗

+∩∂B)

〈µ, y〉

= sup
µ∈co(Y ∗

+∩∂B)
〈µ, y〉

= sup
µ∈Y ∗

{〈µ, y〉 − δco(Y ∗
+∩∂B)(µ)} = δ∗co(Y ∗

+∩∂B)(y).

The indicator function δco(Y ∗
+∩∂B) ∈ Γ0(Y

∗) because co(Y ∗
+∩∂B) is a nonempty convex

closed set in Y ∗. Hence δco(Y ∗
+∩∂B) = δ∗∗co(Y ∗

+∩∂B) = ∆∗
−Y+

.

2. This assertion follows directly from (6) and the fact that dom∆−Y+ = Y .

REMARK 5. As first consequences, we have

1. ∂∆−Y+(ȳ) ⊂ Y ∗
+ \ {0} ∩B for all ȳ ∈ Y , if intY+ 6= ∅.

Indeed, Y ∗
+ ∩ ∂B ⊂ Y ∗

+ ∩ B. Now, if 0 ∈ ∂∆−Y+(ȳ) then we get ∆−Y+(y) ≥ 0
(∀y ∈ Y ) contradicting the fact that ∆−Y+(y) < 0 (∀y ∈ − intY+).

2. ∂∆−Y+(ȳ) = {µ ∈ Y ∗ : µ ∈ Y ∗
+ , ‖µ‖ = 1, 〈µ, ȳ〉 = ∆−Y+(ȳ)} for all ȳ 6∈ −Y+.

Indeed, according to the first remark, it suffices to show that ‖µ‖ ≥ 1. But this
follows easily from the fact that 0 < ∆−Y+(ȳ) = 〈µ, ȳ〉 ≤ ‖µ‖∆−Y+(ȳ).

PROPOSITION 1. With f proper convex and G proper Y+-convex, we have, ∀n,
∀ x̄ ∈ dom f ∩G−1(− intY+),

∂fn(x̄) =
⋃

µ∈co(Y ∗
+

∩∂B)

〈µ,G(x̄)〉=∆−Y+
(G(x̄))

∂(f −
rn

∆−Y+(G(x̄))
µ ◦G)(x̄). (7)

PROOF. If x̄ 6∈ dom fn then by definition ∂fn(x̄) = ∅. By (2) we have that

x̄ ∈ dom fn = dom f ∩ {x ∈ X : G(x) ∈ − intY+}. (8)

According to Remark 4, the functionals f , g = −rn ln and H = −∆−Y+ ◦ G satisfy
the hypotheses of Theorem 3 with the Moreau-Rockafellar condition. Hence

∂fn(x̄) = ∂(f −
rn

∆−Y+(G(x̄))
∆−Y+ ◦G)(x̄).
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The functions f , g = − rn

∆−Y+
(G(x̄))∆−Y+ and H = G also satisfy the hypotheses of

Theorem 3 with the Moreau-Rockafellar type condition. Hence

∂fn(x̄) =
⋃

µ∈− rn
∆−Y+

(G(x̄))∂∆−Y+
(G(x̄))

∂(f + µ ◦G)(x̄).

Finally by using Lemma 1, we obtain the formula of the proposition.

The convergence of this penalty method for the class FAB
S can now be announced

as follows.

THEOREM 4. Let f ∈ FAB
S . Then, every diagonally stationary sequence for (fn)

is minimizing for f|S , i.e.,

d(0, ∂fn(xn)) → 0 ⇒ f(xn) → inf
S
f(x).

PROOF. The proof consists in showing that (xn) is a (K̃T ) sequence for f|S . Indeed,
as in 2o) Remark 1, xn ∈ dom fn for all n. So by (7, 8) and 1o) Remark 5, we can
deduce the existence of a sequence of Lagrange multipliers (µn) ⊂ Y ∗

+ \ {0} such that,





d(0, ∂L(xn,− rn

∆−Y+
(G(xn))µ

n)) → 0,

〈µn, G(xn)〉 = ∆−Y+(G(xn)) (∀n),
G(xn) ∈ − intY+ (∀n).

Renaming − rn

∆−Y+
(G(xn))

µn by µn which still lies in the cone Y ∗
+ \ {0}, and using the

fact that (rn) ↘ 0+, we obtain the asymptotic complementarity condition:

〈µn, G(xn)〉 = −rn ↗ 0−.

So (xn) is a (K̃T ) sequence. It follows by Theorem 2 that (xn) is minimizing for f|S .
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