Ph.D. Qualifying Examination
Matrix Theory
Sep. 14, 2006

Please write down all the detail of your computation and answers.

1. (10%) Find the third column of the following product matrix

\[
\begin{bmatrix}
\pi & \sqrt{e} & \frac{1}{3} & \sqrt{2} \\
3.7 & 10^5 & 7 & 0 \\
\ln 2 & i & \sin 3 & -1
\end{bmatrix}
\begin{bmatrix}
-\sqrt{3} & 0 & \sqrt{3} \\
0.2 & -0.3 & 0.1 \\
2 & -1 & -1
\end{bmatrix}
\begin{bmatrix}
a & b & c \\
b & c & a \\
c & a & b
\end{bmatrix}
\begin{bmatrix}
-1 & 2.3 & 1 & -3 \\
\sqrt{5} & \frac{1}{2} & 1 & 2 \\
3 & -2 & 1 & \sqrt{2}
\end{bmatrix}.
\]

2. (15%) Let \(A \) be an diagonalizable matrix and \(t \) be a parameter. Consider the linear equation \((A - tI)x = b\). (1) Discuss the existence and uniqueness of \(x \) in terms of the values of \(t \) and \(b \), eigenvalues and eigenvectors of \(A \). (2) Find all of its solutions if they exist.

3. (15%) Let \(A \) and \(B \) be two real matrices. Without considering the multiplicity, show that \(AB \) and \(BA \) have the same eigenvalues.

4. (15%) (1) State the Fundamental Theorem of Linear Algebra. (2) Use it to prove the existence of singular value decomposition of any \(m \times n \) complex matrix.

5. (15%) What is the relation between eigenvalues and singular values of a square matrix \(A \) if \(A \) is (1) normal, (2) Hermitian, (3) Hermitian positive definite? State the reasons.

6. (15%) (1) State all the equivalent conditions you know for a matrix to be positive definite. (2) Prove all your conditions are equivalent.

7. (15%) (1) Use the Geršgorin Disk Theorem to prove that a strictly diagonally dominant matrix is nonsingular. (2) Use the nonsingularity of strictly diagonally dominant matrix to prove the Geršgorin Disk Theorem.