1. Prove or disprove:

 (a) if p is a prime, then p is a divisor of $(p - 1)! + 1$.

 (b) if p is a divisor of $(p - 1)! + 1$, then p is a prime.

2. Classify all the groups which has order 10. And prove it.

3. Prove or disprove: if R is a finite integral domain, then R is a field.

4. Let R be a commutative ring and $f(x) = a_0 + a_1x + \cdots + a_n x^n \in R[x]$. Prove or disprove: if $f(x)$ is nilpotent, then a_i is nilpotent for all $i = 0, 1, \ldots, n$.

5. Let $\alpha_1, \alpha_2, \ldots, \alpha_t$ be roots of $f(X) \in \mathbb{Q}[X]$. Prove or disprove:

\[\mathbb{Q}(\alpha_1, \alpha_2, \ldots, \alpha_t) = \mathbb{Q}[\alpha_1, \alpha_2, \ldots, \alpha_t] \]

6. Find a polynomial $f(X) \in \mathbb{Q}[X]$ with degree 3 such that the Galois group of $\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3)$ over \mathbb{Q} is isomorphism to \mathbb{Z}_3 (where $\alpha_1, \alpha_2, \alpha_3$ are the three roots of $f(X)$). And prove it (i.e. prove the polynomial you give satisfy the desired properties).

1, 2: 20 points; 3–6: 15 points.