Analysis

1. Let $\{f_n\}$ and $\{g_n\}$ be sequences of continuous functions on $E \subseteq \mathbb{R}$. Suppose that $f_n \to f$ and $g_n \to g$ uniformly on E.

(a) Does $f_n + g_n \to f + g$ uniformly on E?

(b) Does $f_n g_n \to fg$ uniformly on E?

2. Suppose that f is continuous on (a, b) with no local maximum and minimum. Show that f is monotone.

3. Let f be a continuous function on (0,1]. Show that f is uniformly continuous if and only if $\lim_{x\to 0^+} f(x)$ exists.

4. Let f be a continuous function on $[0, +\infty)$. Suppose that

$$\lim_{x \to +\infty} f(x) = f(x_0)$$

for some $x_0 \ge 0$. Then f attains both maximum and minimum on $[0, +\infty)$.

5. Show that if f_n is continuous for all n and $f_n \to f$ uniformly on E, then $f_n(x_n) \to f(x)$ if $x_n \to x$ for some $x \in E$. Is the converse true?

6. Let S be a compact subset of \mathbb{R} . Show that $f: S \to \mathbb{R}$ is continuous if and only if $\Gamma(f) = \{(x, f(x)) : x \in S\}$ is compact in \mathbb{R}^2 .

7. Let $a_n > 0$ and $\sum a_n = +\infty$.

(a) Show that $\sum \frac{\sqrt{a_n}}{n^p} < +\infty \text{ if } p > \frac{1}{2}$.

(b) Does (a) still hold if $p = \frac{1}{2}$?

8. Let $a_n > 0$ and $\sum a_n = +\infty$. Show that $\sum \frac{a_n}{1 + a_n} = +\infty$.

9. Let $a_n > 0$, $\sum a_n = +\infty$ and $s_n = a_1 + \cdots + a_n$. Show that

(a)
$$\frac{a_{N+1}}{s_{N+1}} + \dots + \frac{a_{N+k}}{s_{N+k}} \ge 1 - \frac{s_N}{s_{N+k}}, \forall N, k.$$

(b) Use (a) to show that $\sum \frac{a_n}{s_n} = +\infty$.

10. Let

$$f(x) = \begin{cases} x & x \notin \mathbb{Q} \\ p\sin(1/q) & x = p/q, \ (p,q) = 1 \end{cases}$$

Determine $\{x \in \mathbb{R} : \text{f is not continuous at } x\}$.

Linear Algebra

1. Find bases for (1) the column space and (2) the null space of the matrix

$$\left(\begin{array}{ccccc}
2 & 3 & 1 & -1 \\
5 & 2 & 1 & 3 \\
1 & 7 & 2 & -6 \\
6 & -2 & 0 & 8
\end{array}\right).$$

2. Determine whether the 3×3 matrix

$$\left(\begin{array}{rrr}
1 & 3 & -3 \\
2 & 5 & -3 \\
-2 & 2 & -4
\end{array}\right)$$

is invertible, and find its inverse if it is.

3. By the Gauss-Jordan reduction, one obtains the inverse of the 4×4 matrix A by a series of row operations: (1) interchanging the 1st row and the 3rd row (2) multiplying -3 to the 3rd row and add it to the 1th row (3) multiplying the 2nd row by $\frac{1}{3}$ (4) add the 1st row to the 3th row and (5) interchanging the 1st row and the 4th row. Find A and A^{-1} .

4. Determine whether the 4×4 matrix A given by

$$\left(\begin{array}{ccccc}
-1 & 4 & 2 & -7 \\
0 & 4 & -3 & 6 \\
0 & 0 & -3 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)$$

is diagonalizable, and find a 4×4 matrix M such that $M^{-1}AM$ is diagonal if it is.

5. Find the rank of the 4×3 matrix A

$$\left(\begin{array}{ccc} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 1 & -3 \\ 1 & -3 & 4 \end{array}\right).$$

Can we find a 3×4 matrix B such that $BA = I_3$? Find such B if it can be done.

- **6.** Let W = sp([1, 2, 1, -1], [0, -1, 1, -1]), a subspace of \mathbb{R}^4 .
- (1) Find W^{\perp} .
- (2) Find orthonormal bases for W and $W^{\perp}.$
- 7. Find the Jordan canonical form J of the 6×6 matrix A

$$\begin{pmatrix} 2 & 1 & -1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{pmatrix}.$$

8. Find up to similarity all matrices with characteristic polynomial

$$(x-1)^3(x+1)^4(x-3)^5$$
.