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In this talk

We explore a variety of multistability scenarios in the general delayed
neural network system.

We derive criteria from different geometric configurations which lead
to disparate numbers of equilibria.

We introduce a new approach, named sequential contracting, to
conclude the global convergence (to multiple equilibrium points) of
the system.
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Background: multistability and time delay

Multistability is a notion to describe the coexistence of multiple stable
equilibria or cycles.

- Such dynamics is essential in several applications of neural networks,
including pattern recognition and associative memory storage.

Time delays are ubiquitous in many natural and artificial systems.

- Delays can modify the collective dynamics of neural networks; for
example, they can induce oscillation or change the stability of the
equilibrium point.

- Taking time delay into account in mathematical models usually
increases mathematical technicality.
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Background: model

Hopfield-type neural network:

ẋi (t) = −µixi (t) +
n∑

j=1

[αijgj(xj(t)) + βijgj(xj(t − τij))] + Ii , (1)

i = 1, 2, · · · , n.

µi > 0, αij , βij : connection weights, Ii : bias current sources

τij ≥ 0: time delays, bounded by τM

gj : activation/output function (introduced later)
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Classes of activation functions

Classes A, B, C.

We focus on class A. Let ρi := max{|ui |, |vi |}, g ′i (σi ) = Li
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Background: the existing works

Existence of multiple equilibrium points:

- numbers of equilibria are in terms of n-power of the number of saturated
(or near saturated) regions in a n-neuron system,
e.g. 3n, (2r + 1)n, etc.

* We can derive the numbers of equilibria which are not in power of n,
e.g. 3, 5, 7, for n = 2.

Stability/convergence of dynamics:

- common restriction 1: cooperative (αij , βij ≥ 0, i 6= j) or competitive
(αij , βij < 0, i 6= j) (monotone dynamics theory)

- common restriction 2: restricted to the class of piecewise-linear activation
functions.
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Let us now present our approach to study the

existence of equilibrium points for system (1)
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Existence of equilibria for system (1)

Recall system (1):

ẋi (t) = −µixi (t)+
n∑

j=1

[αijgj(xj(t))+βijgj(xj(t−τij))]+Ii , i = 1, . . . , n.

Consider the stationary equations for (1):

Fi (x) := −µixi +
n∑

j=1

(αij + βij)gj(xj) + Ii = 0, i = 1, . . . , n. (2)

x = (x1, · · · , xn) is an equilibrium of system (1) if

Fi (x) = 0, i = 1, . . . , n.

Our approach combines a geometric formulation on Fi (x) and the
Brouwer’s fixed-point theorem.
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Brouwer’s fixed-point theorem

Brouwer’s fixed-point theorem.

Every continuous function from a convex compact subset K of a Euclidean space
to K itself has a fixed point.
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Existence of equilibria in system (1) - Idea

Locate a region K := K1 × · · · ×Kn, with each Ki an interval in R, so
that for an arbitrary (ζ1, . . . , ζn) ∈ K , for every i = 1, . . . , n, there
exists a solution xi ∈ Ki to

Fi (ζ1, . . . , ζi−1, xi , ζi+1, . . . , ζn) = 0.

Define a continuous mapping Φ : K → K , satisfying

Φ(ζ1, . . . , ζn) = (x1, . . . , xn).

There exists a x = (x̄1, · · · , x̄n), s.t. Φ(x) = (x), i.e.,

Fi (x) = 0, i = 1, . . . , n

x is an equilibrium of system (1) (in K ). If in addition that Φ is a
contraction mapping, then x the unique equilibrium in K .
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How to locate region K : Upper and lower functions

Recall the stationary equations:

Fi (x) := −µixi +
n∑

j=1

(αij + βij)gj(xj) + Ii , (3)

where each gj(·) ≤ ρj .

For i = 1, 2, · · · , n, we define

f̂i (ξ) := −µiξ + (αii + βii )gi (ξ) + k+
i ,

f̌i (ξ) := −µiξ + (αii + βii )gi (ξ) + k−i ,

where k±i := ±
∑n

j=1,j 6=i ρj |αij + βij |+ Ii .

f̌i (xi ) ≤ Fi (x) ≤ f̂i (xi ), i = 1, . . . , n,

for all x = (x1, . . . , xn).
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Configuration of upper and lower functions:
Two cases, and eight subcases

Set N := {1, 2, · · · , n}.

M := {i ∈ N|max
ξ∈R

g ′i (ξ) ≤ µi

αii + βii
},

B := {i ∈ N| inf
ξ∈R

g ′i (ξ) <
µi

αii + βii

< max
ξ∈R

g ′i (ξ)},

(a) is of type M;
(b)-(g) are of type B.

(b)-(g) are of type Brr, Bll,
B3

3, Br3, B3
l , Brl ,

respectively.
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Existence of 3k equilibria for system (1)

Theorem.

If M∪Brr ∪Bll ∪B3
3 = N := {1, . . . , n}, and k = card(B3

3) ≥ 1, then there
exist 3k equilibria in system (1).

Sketch of Proof. We consider 3k disjoint closed regions in Rn:

Ω̃w = {(x1, · · · , xn) ∈ Rn | xi ∈ Ω̃wi
i }, (4)

w = (w1, · · · ,wn),

wi = “l”, “m”, “r”, for i ∈ B3
3,

wi = “s”, for i ∈M∪ Brr ∪ Bll,

where Ω̃l
i = [ǎi , âi ], Ω̃m

i = [b̂i , b̌i ], Ω̃r
i = [či , ĉi ] and Ω̃s

i = [m̌i , m̂i ].
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Existence of exact 3k equilibria for system (1)

Theorem.

Assume that M∪Brr ∪ Bll ∪ B3
3 = N with k = card(B3

3) ≥ 1.

For each i ∈ N , fix
a θi ∈ (0, µi ) and then define

L̄i :=

{ µi−θi
αii+βii

, if i ∈M∪ Brr ∪ Bll,
Li , if i ∈ B3

3.
(5)

If θi >
∑n

j=1,j 6=i L̄j |αij + βij |, and

g ′i (ξ)


< µi−θi
αii+βii

, if ξ ∈ [m̌i , m̂i ], i ∈M∪ Brr ∪ Bll,
< µi−θi
αii+βii

, if ξ ∈ (−∞, âi ] ∪ [či ,∞), i ∈ B3
3,

> µi+θi
αii+βii

, if ξ ∈ [b̂i , b̌i ], i ∈ B3
3,

(6)

for all i ∈ N , then there exist exactly 3k equilibria in system (1), and each region
Ω̃w, defined in (4), contains exactly one of these 3k equilibria.
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Global convergence to exactly 3k equilibrium

points for system (1)
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Global convergence exact 3k equilibria: Idea

Fix an arbitrary initial condition φ.
Its solution x(t) = (x1(t), · · · , xn(t)) of system (1) is then a fixed
function defined on [t0,∞).

For each i ∈ N , the ith component xi (t) satisfies

ẋi (t) = −µixi (t) + αiigi (xi (t)) + βiigi (xi (t − τii )) + wi (t), (7)

for all t ≥ t0, where

wi (t) :=
∑
j 6=i

{αijgj(xj(t)) + βijgj(xj(t − τij))}+ Ii .

For later use, we define for each i ∈ N ,

wmax
i (T ) := sup{wi (t) | t ≥ T},wmin

i (T ) := inf{wi (t) | t ≥ T}
wmax
i (∞) := lim

T→∞
wmax
i (T ),wmin

i (∞) := lim
T→∞

wmin
i (T )

J.P. Tseng (NCCU) Multistability for Delayed Neural Networks January 21, 2016 16 / 37



Global convergence exact 3k equilibria: Idea

Fix an arbitrary initial condition φ.
Its solution x(t) = (x1(t), · · · , xn(t)) of system (1) is then a fixed
function defined on [t0,∞).

For each i ∈ N , the ith component xi (t) satisfies
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Global convergence exact 3k equilibria: Idea

Recall M∪Brr ∪ Bll ∪ B3
3 = N with k = card(B3

3) ≥ 1.
We shall show that under some conditions,

for each i ∈M∪ Brr ∪ Bll, xi (t) converges to [mi ,mi ], where

mi −mi ≤ [wmax
i (∞)− wmin

i (∞)]/[(1− 2|βii |Liτii )θi ].

for each i ∈ B3
3, xi (t) converges to one of the three disjoint intervals:

[ai , ai ], [bi , bi ], and [c i , c i ], where

0 ≤ ai − ai , bi − bi , c i − c i

≤ [wmax
i (∞)− wmin

i (∞)]/[(1− 2|βii |Liτii )θi ].
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Global convergence of dynamics in system (1)

Proposition

Let x(t) = (x1(t), · · · , xn(t)) be a fixed solution of (1). Assume that for every
i ∈ N , there exists a compact interval Ji of length di , such that xi (t) converges
to Ji and di satisfies

di ≤ [wmax
i (∞)− wmin

i (∞)]/ηi ,

for some ηi > 0, and

there exist a compact interval J̃i and a L̃i ≥ 0, such that
Ji ⊆ J̃i and

g ′i (ξ) ≤ L̃i for all ξ ∈ J̃i .

Let M := [mij ]1≤i,j≤n with mii := ηi , mij := −(|αij |+ |βij |)L̃j for i 6= j . If the
Gauss-Seidel iteration for solving the linear system

Mv = 0, (8)

converges to zero, the unique solution of (8), then every di degenerates into zero
and the solution x(t) of system (1) converges to a singleton.
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Asymptotic behavior of xi(t), where i ∈M∪ Br
r ∪ Bl

l

Proposition A.

Assume that conditions (M1)-(M3) hold for some i ∈ N . Then xi (t) satisfying
(7) converges to [mi ,mi ], where

mi −mi ≤ [wmax
i (∞)− wmin

i (∞)]/[(1− 2|βii |Liτii )θi ].

Condition (M1):
|βii |τii < (|αii |+ |βii |)ρi/{Li [4(|αii |+ |βii |)ρi + wmax

i (t0)− wmin
i (t0)]}.

Condition (M2): There exists a T0 ≥ t0 such that f̂
(0)
i (·,T0) and f̌

(0)
i (·,T0)

have unique zeros, m̂
(0)
i (T0) and m̌

(0)
i (T0), respectively.

Condition (M3): g ′i (ξ) < (µi − θi )/(αii + βii ) for all

ξ ∈ [m̌
(0)
i (T0), m̂

(0)
i (T0)] for some θi ∈ (0, µi ).
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Proof of Proposition A. -1

Recall (7):

ẋi (t) = −µixi (t) + αiigi (xi (t)) + βiigi (xi (t − τii )) + wi (t),

Define the upper and lower bounds for (7), respectively:

ĥi (ξ) := −µiξ + 2(|αii |+ |βii |)ρi + wmax
i (t0), (9)

ȟi (ξ) := −µiξ − 2(|αii |+ |βii |)ρi + wmin
i (t0). (10)

ĥi and ȟi are linear decreasing functions, with unique zeros Âh
i and

Ǎh
i , respectively.

ȟi (xi (t)) + (|αii |+ |βii |)ρi ≤ ẋi (t) ≤ ĥi (xi (t))− (|αii |+ |βii |)ρi ,

for all t ≥ t0. Consequently, there exists a tφ such that xi (t) enters

and remains in interval [Ǎh
i , Â

h
i ] for t ≥ tφ.
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ĥi and ȟi are linear decreasing functions, with unique zeros Âh
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Proof of Proposition A.-2

Accordingly, we can construct the second preliminary upper and lower
bounds for (7):

f̂
(0)
i (ξ,T ) :=

{
γ̂i (ξ,T )− βiiLiτii ȟi (Âh

i ) if βii ≥ 0,

γ̂i (ξ,T )− βiiLiτii ĥi (Ǎh
i ) if βii < 0,

(11)

f̌
(0)
i (ξ,T ) :=

{
γ̌i (ξ,T )− βiiLiτii ĥi (Ǎh

i ) if βii ≥ 0,

γ̌i (ξ,T )− βiiLiτii ȟi (Âh
i ) if βii < 0,

(12)

where

γ̂i (ξ,T ) := −µiξ + (αii + βii )gi (ξ) + wmax
i (T ),

γ̌i (ξ,T ) := −µiξ + (αii + βii )gi (ξ) + wmin
i (T ).
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Proof of Proposition A.-3

Condition (M1) implies |αii |+ |βii | > 0, and thus

ȟi (ξ) < f̌
(0)
i (ξ, t0) ≤ f̌

(0)
i (ξ,T ) ≤ f̂

(0)
i (ξ,T ) ≤ f̂

(0)
i (ξ, t0) < ĥi (ξ)

(13)
for all T ≥ t0 and ξ ∈ R.

For any T ≥ max{tφ + τ,T0},

f̌
(0)
i (xi (t),T ) + εi ≤ ẋi (t) ≤ f̂

(0)
i (xi (t),T )− εi , t ≥ T

where εi := |βii |(|αii |+ |βii |)ρiLiτii .
Consequently xi (t) enters and remains in interval [m̌

(0)
i (T ), m̂

(0)
i (T )]

contained in [Ǎh
i , Â

h
i ] after certain time,

where m̌
(0)
i (T ) (resp., m̂

(0)
i (T )) is the unique zero of f̌

(0)
i (·,T ) = 0

(resp., f̂
(0)
i (·,T ) = 0).
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h
i ] after certain time,

where m̌
(0)
i (T ) (resp., m̂

(0)
i (T )) is the unique zero of f̌

(0)
i (·,T ) = 0

(resp., f̂
(0)
i (·,T ) = 0).

J.P. Tseng (NCCU) Multistability for Delayed Neural Networks January 21, 2016 22 / 37



Proof of Proposition A.-3

Condition (M1) implies |αii |+ |βii | > 0, and thus
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Proof of Proposition A.-4

Iteratively applying arguments based on constructing finer upper f̂
(k)
i

and lower bounds f̌
(k)
i for (7) allows us to establish the convergence

of xi (t) to some compact interval [mi ,mi ], where

mi −mi ≤ [wmax
i (∞)− wmin

i (∞)]/[(1− 2|βii |Liτii )θi ].
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Convergence to one of three intervals

Proposition B.

Assume that conditions (B1)-(B3) hold for some i ∈ N and some
θi ∈ (0, µi ). Then xi (t) satisfying (7) converges toone of the three disjoint
intervals: [ai , ai ], [bi , bi ], and [c i , c i ], where

0 ≤ ai − ai , bi − bi , c i − c i

≤ [wmax
i (∞)− wmin

i (∞)]/[(1− 2|βii |Liτii )θi ].
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Conditions (B1)-(B3)

Condition (B1): Li > µi/(αii + βii ) > 0,
|βii |τii < (|αii |+ |βii |)ρi/{Li [4(|αii |+ |βii |)ρi + wmax

i (t0)− wmin
i (t0)]}.

Notably, condition (B1) implies Li > µ/(αii + βii ). There hence exist exactly
two points p̃i and q̃i with p̃i < σi < q̃i , satisfying

g ′i (p̃i ) = g ′(q̃i ) = µi/(αii + βii ).

Condition (B2): There exists a T0 ≥ t0 such that f̌
(0)
i (q̃i ,T0) > 0 and

f̂
(0)
i (p̃i ,T0) < 0.

Under condition (B2), there exist exactly three zeros âi , b̂i and ĉi (resp., ǎi ,

b̌i and či ) of f̂
(0)
i (·,T0) = 0 (resp., f̌

(0)
i (·,T0) = 0), where

ǎi ≤ âi < p̃i < b̂i ≤ b̌i < q̃i < či ≤ ĉi . Let θi ∈ (0, µi ) be a fixed number.

Condition (B3):

g ′i (ξ)

{
>(µi + θi )/(αii + βii ) if ξ ∈ [b̂i , b̌i ],
<(µi − θi )/(αii + βii ) if ξ ∈ (−∞, âi ] ∪ [či ,∞).
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Global convergence of dynamics in system (1)

Theorem

Assume that M∪Brr ∪ Bll ∪ B3
3 = N , (16) and (17) hold, and for each

i ∈ N
|βii |τii < τ cii , (14)

and

g ′i (ξ)


< µi−θi
αii+βii

, if ξ ∈ [m̌F
i , m̂

F
i ], i ∈M∪ Brr ∪ Bll,

< µi−θi
αii+βii

, if ξ ∈ (−∞, âFi ] ∪ [čFi ,∞), i ∈ B3
3,

> µi+θi
αii+βii

, if ξ ∈ [b̂Fi , b̌
F
i ], i ∈ B3

3,

(15)

for some θi ∈ (0, µi ). Then system (1) achieves global convergence to
the 3k equilibria provided that the Gauss-Seidel iteration for the linear
algebraic system (8) converges to zero, the unique solution.
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Global convergence of dynamics in system (1)

Theorem. continued

where mii = (1− 2|βii |Liτii )θi for i ∈ N , mij = −(|αij |+ |βij |)L̄j for
i , j ∈ N , i 6= j , and L̄j is defined in (5), and

θi >

n∑
j=1,j 6=i

L̄j |αij + βij |, (16)


F̌i (p̃i ) > 0 if i ∈ Brr,
F̂i (q̃i ) < 0 if i ∈ Bll,
F̂i (p̃i ) < 0, F̌i (q̃i ) > 0 if i ∈ B3

3,

(17)
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Example: existence of 9 equilibria

Example 1

We consider system (1) with n = 3, under the parameters:

(µi ) =

 1
1
1

 , (αij) =

 1.8 0.05 0
0.05 1.9 0

0 0.05 0.6

 ,

(Ii ) =

 0.05
0

0.15

 , (βij) =

 0.2 0 0.05
0 0.1 0.05

0.05 0 0.1

 .

In addition, we set τii = 0.1, τij = 12 for i , j = 1, 2, 3, i 6= j .

i = 1, 2 ∈ B3
3 and i = 3 ∈M

card(B3
3) = 2
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Example 1: 9 equilibria, where 4 ones are stable
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Figure: Numerical simulation for Example 1.
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Other cases of multistability for (1) with n = 2
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The upper and lower functions

Recall the stationary equations:

Fi (x) := −µixi +
n∑

j=1

(αij + βij)gj(xj) + Ii , (18)

where each gj(·) ≤ ρj .

The upper and lower functions are now

f̂1(ξ) = −µ1ξ + (α11 + β11)g1(ξ) + |α12 + β12|ρ2 + I1,

f̌1(ξ) = −µ1ξ + (α11 + β11)g1(ξ)− |α12 + β12|ρ2 + I1,

f̂2(ξ) = −µ2ξ + (α22 + β22)g2(ξ) + |α21 + β21|ρ1 + I2,

f̌2(ξ) = −µ2ξ + (α22 + β22)g2(ξ)− |α21 + β21|ρ2 + I2,

For this two-neuron system, there are four basic types, as shown in
the next slide.
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4 types for n = 2

We shall take the case ( rr )( r
3 ) to introduce these notations.

Type Subtype Cases
(M,M) T1 ( m

m
)( m

m
)

(M,B) T2 ( m
m

)( r
r

), ( m
m

)( l
l

)

T3 ( m
m

)( 3
3

)

T4 ( m
m

)( r
3

), ( m
m

)( 3
l

)

T5 ( m
m

)( r
l

)

(B,M) T6 ( r
r

)( m
m

), ( l
l

)( m
m

)

T7 ( 3
3

)( m
m

)

T8 ( r
3

)( m
m

), ( 3
l

)( m
m

)

T9 ( r
l

)( m
m

)

(B,B) T10 ( r
r

)( r
r

), ( l
l

)( l
l

), ( r
r

)( l
l

), ( l
l

)( r
r

)

T11 ( r
r

)( 3
3

), ( l
l

)( 3
3

), ( 3
3

)( r
r

), ( 3
3

)( l
l

)

T12 ( r
r

)( r
3

), ( r
r

)( 3
l

), ( l
l

)( r
3

), ( l
l

)( 3
l

)

( r
3

)( r
r

), ( r
3

)( l
l

), ( 3
l

)( r
r

), ( 3
l

)( l
l

)

T13 ( r
r

)( r
l

), ( l
l

)( r
l

), ( r
l

)( r
r

), ( r
l

)( l
l

)

T14 ( 3
3

)( 3
3

)

T15 ( 3
3

)( r
3

), ( 3
3

)( 3
l

), ( r
3

)( 3
3

), ( 3
l

)( 3
3

)

T16 ( 3
3

)( r
l

), ( r
l

)( 3
3

)

T17 ( r
3

)( r
3

), ( 3
l

)( 3
l

)

T18 ( r
3

)( 3
l

), ( 3
l

)( r
3

)

T19 ( r
3

)( r
l

), ( 3
l

)( r
l

), ( r
l

)( r
3

), ( r
l

)( 3
l

)

T20 ( r
l

)( r
l

)

Table: Subtypes in (M,M), (M,B), (B,M), and (B,B).
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Case ( rr )( r
3) in type (B,B)

Recall the Fi and f̌i and f̂i , i = 1, 2. If α21 + β21 > 0, we consider

f m̂2 (ξ) = −µ2ξ + (α22 + β22)gi (ξ) + (α21 + β21)g(m̂1) + I2,

f m̌2 (ξ) = −µ2ξ + (α22 + β22)gi (ξ) + (α21 + β21)g(m̌1) + I2.
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multistability for subcase ( rr )( r
3)

Theorem.

Consider system system (1) with n = 2 and the case ( rr)( r
3 ). There exists

one equilibrium if K2(p̃2; S1) > 0, and three equilibria if K2(p̃2;S1) < 0.

We can further establish the convergence of dynamics for system (1).
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Other cases of multistability: case (3
3)( r

3)

Criteria ] Equi.

α21 + β21 > 0
K2(p̃2;A1) > 0 3
K2(p̃2;A1) < 0 < K2(p̃2;B1) 5
K2(p̃2;B1) < 0 < K2(p̃2;C1) 7
K2(p̃2;C1) < 0 9

α21 + β21 < 0
K2(p̃2;C1) > 0 3
K2(p̃2;C1) < 0 < K2(p̃2;B1) 5
K2(p̃2;B1) < 0 < K2(p̃2;A1) 7
K2(p̃2;A1) < 0 9

Table: Criteria for various numbers of equilibrium points for the case ( 3
3 )( r

3 ).
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Other cases of multistability: case (3
3)( rl )

Criteria ] Equi.

α21 + β21 > 0
K2(p̃2;A1) > 0 3
K2(p̃2; •) < 0 and K2(q̃2; •) > 0 for • = A1,B1 or C1 5
K2(p̃2;B1) < 0, K2(p̃2;C1) > 0, K2(q̃2;A1) > 0 7
K2(p̃2;C1) < 0, K2(q̃2;B1) > 0, K2(q̃2;A1) < 0 7
K2(p̃2;C1) < 0, K2(q̃2;A1) > 0 9

α21 + β21 < 0
K2(q̃2;C1) < 0 3
K2(p̃2; •) < 0 and K2(q̃2; •) > 0 for • = A1,B1 or C1 5
K2(p̃2;B1) < 0, K2(p̃2;A1) > 0, K2(q̃2;C1) > 0 7
K2(p̃2;A1) < 0, K2(q̃2;B1) > 0, K2(q̃2;C1) < 0 7
K2(p̃2;A1) < 0, K2(q̃2;C1) > 0 9

Table: Criteria for various numbers of equilibrium points for the case ( 3
3 )( r

l ).
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This is The End of The Presentation
And Thank You for Your Attention
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