

An efficient Wave Based Method for solving Helmholtz problems in three-dimensional bounded domains

<u>B. Van Genechten</u>, O. Atak, B. Bergen, E. Deckers,
 S. Jonckheere, J.S. Lee, A. Maressa, K. Vergote,
 B. Pluymers, D. Vandepitte and W. Desmet

Katholieke Universiteit Leuven Departement Werktuigkunde

http://www.mech.kuleuven.be/mod/wbm/

Trefftz/MFS 2011 Conference March 15-18, 2011 Kaohsiung, Taiwan

Introduction WBM Numerical validation Conclusions

The Wave Based Method 2

Numerical validation of the WBM for 3D acoustics

Conclusions

- Vibro-acoustics Numerical modelling
- WBM
- Numerical validation
- Conclusions

Introduction

- Vibro-acoustic interactions
- Numerical modelling approaches for mid-frequency vibro-acoustic problems

Overview

The Wave Based Method

Numerical validation of the WBM for 3D acoustics

4 Conclusions

Vibro-acoustic interactions

KATHOLIEKE UNIVERSITEIT

Vibro-acoustic interactions

KATHOLIEKE UNIVERSITEIT

- Introduction Vibro-acoustics Numerical modelling WBM
- Numerical validation
- Conclusions

Available approaches

Deterministic element based methods: FEM, BEM,...

- approximating shape functions
- fine discretisations

 $\Rightarrow \text{low-frequency}$

- Introduction Vibro-acoustics
- Numerical modelling
- WBM
- Numerical validation
- Conclusions

Available approaches

Deterministic element based methods: FEM, BEM,...

- approximating shape functions
- fine discretisations

 \Rightarrow low-frequency

- Introduction
- Vibro-acoustics
- Numerical modelling
- WBM
- Numerical validation
- Conclusions

Available approaches

Deterministic element based methods: FEM, BEM,...

- approximating shape functions
- fine discretisations

 \Rightarrow low-frequency

- Introduction
- Vibro-acoustics
- Numerical modelling
- WBM
- Numerical validation
- Conclusions

Available approaches

Deterministic element based methods: FEM, BEM,...

- approximating shape functions
- fine discretisations

 $\Rightarrow \text{low-frequency}$

- Introduction
- Vibro-acoustics Numerical modelling
- WBM
- Numerical validation
- Conclusions

Available approaches

Statistical energy based methods: SEA, EFEM,...

- energy in SEA subsystems
- underlying assumptions

 \Rightarrow high-frequency

- Introduction
- Vibro-acoustics Numerical modelling
- WBM
- Numerical validation
- Conclusions

- Introduction Vibro-acoustics
- Numerical modelling
- WBM
- Numerical validation
- Conclusions

- Introduction Vibro-acoustics
- Numerical modelling
- WBM
- Numerical validation
- Conclusions

- Introduction Vibro-acoustics
- Numerical modelling
- WBM
- Numerical validation
- Conclusions

- Introduction Vibro-acoustics
- Numerical modelling
- WBM
- Numerical validation
- Conclusions

Wave Based Method

Deterministic element based methods: FEM, BEM,...

- approximating shape functions
- fine discretisations

 \Rightarrow low-frequency

Statistical energy based methods: SEA, EFEM,...

- energy in SEA subsystems
- underlying assumptions

 \Rightarrow high-frequency

Deterministic Trefftz-based Wave Based Method

- Basis functions = exact solutions of governing equations
- Enhanced numerical convergence properties

 \Rightarrow applicable to mid-frequency problems

WBM

Problem definition WBM concepts

Numerical validation

Conclusions

Introductio

2

- The Wave Based Method
 - Problem definition
 - Wave Based modelling approach

Numerical validation of the WBM for 3D acoustics

Overview

WBM

Problem definition WBM concepts

Numerical validation

Conclusions

WBM modelling approach

Dynamic equations: Helmholtz problems

• Steady-state dynamic acoustic pressure *p*(**r**) in *V*: Helmholtz equation

$$abla^2 p(\mathbf{r}) + k^2 p(\mathbf{r}) = \mathcal{F}(\mathbf{r}), \mathbf{r} \in \Omega$$

At each point of Ω_•: 1 boundary condition

$$\begin{bmatrix} \mathbf{r} \in \Omega_{\nu} : \mathcal{L}_{\nu}(p(\mathbf{r})) = \bar{\nu}_{n}(\mathbf{r}) ,\\ \mathbf{r} \in \Omega_{Z} : \mathcal{L}_{\nu}(p(\mathbf{r})) = p(\mathbf{r})/\bar{Z}_{n}(\mathbf{r}) ,\\ \mathbf{r} \in \Omega_{p} : p(\mathbf{r}) = \bar{p}(\mathbf{r}) . \end{bmatrix}$$

WBM

Problem definition WBM concepts

Numerical validation

Conclusions

WBM modelling approach

General WBM modelling process

Approximation of the field variables within each of the subdomains using physically meaningful wave functions en source terms

WBM approximation

$$p^{(\alpha)}(\mathbf{r}) \simeq \sum p_w^{(\alpha)} \Phi_w^{(\alpha)}(\mathbf{r}) + \hat{p}_q^{(\alpha)}(\mathbf{r})$$

WBM

Problem definition WBM concepts

Numerical validation

Conclusions

WBM modelling approach

General WBM modelling process

- Approximation of the field variables within each of the subdomains using physically meaningful wave functions en source terms
- Minimisation of the approximation errors using a Galerkin weighted residual formulation

$$egin{aligned} &\int_{\Omega_
u} \widetilde{p}(\mathbf{r}) \; R_
u(\mathbf{r}) d\Omega + \int_{\Omega_Z} \widetilde{p}(\mathbf{r}) \; R_Z(\mathbf{r}) \mathrm{d}\Omega \ &+ \int_{\Omega_p} -\mathcal{L}_
u(\widetilde{p}(\mathbf{r})) \; R_p(\mathbf{r}) d\Omega = 0 \end{aligned}$$

WBM

Problem definition WBM concepts

Numerical validation

Conclusions

WBM modelling approach

General WBM modelling process

- Approximation of the field variables within each of the subdomains using physically meaningful wave functions en source terms
- Minimisation of the approximation errors using a Galerkin weighted residual formulation
- Solution of the resulting system of equations

$$\begin{bmatrix} A_w^1 & \cdots & C_w^{1,N_\Omega} \\ \vdots & \ddots & \vdots \\ C_w^{N_\Omega,1} & \cdots & A_w^{N_\Omega} \end{bmatrix} \begin{cases} p_w^1 \\ \vdots \\ p_w^{N_\Omega} \end{cases} = \begin{cases} F_w^1 \\ \vdots \\ F_w^{N_\Omega} \end{cases}$$

- WBM
- Problem definition WBM concepts
- Numerical validation
- Conclusions

WBM modelling approach

General WBM modelling process

- Approximation of the field variables within each of the subdomains using physically meaningful wave functions en source terms
- Minimisation of the approximation errors using a Galerkin weighted residual formulation
- Solution of the resulting system of equations
- Postprocessing, visualisation and interpretation of the response fields

- WBM
- Problem definition WBM concepts
- Numerical validation
- Conclusions

WBM modelling approach

Applications areas

The WB modelling approach has been successfully applied to

2D steady-state acoustic analysis

- multi-domain interior acoustics
- acoustic scattering problems
- multiple scattering and inclusion problems

2D steady-state structural dynamic analysis

- plate membrane problems
- plate bending problems
- shell analysis

2D steady-state vibro-acoustic analysis

- interior vibro-acoustics
- exterior vibro-acoustics

Current extension:

• 3D steady-state interior acoustics

WBM

Problem definition WBM concepts

Numerical validation

Conclusions

WBM modelling approach

WBM field variable approximations

Acoustic pressure expansion: bounded subdomains

$$p^{(\alpha)}(\mathbf{r}) \simeq \sum_{w=1}^{n_w^{(\alpha)}} p_w^{(\alpha)} \Phi_w^{(\alpha)}(\mathbf{r}) + \hat{p}_q^{(\alpha)}(\mathbf{r})$$

 $\Phi_{w}^{(\alpha)}(\mathbf{r}(x,y))$: *Homogeneous* solutions of Helmholtz eq.

$$\Phi_{w}(\mathbf{r}(x, y, z)) = \begin{cases} \Phi_{w_{r}}(x, y, z) = \cos(k_{xw_{r}}x) \cos(k_{yw_{r}}y) e^{-jk_{zw_{r}}z} \\ \Phi_{w_{s}}(x, y, z) = \cos(k_{xw_{s}}x) e^{-jk_{yw_{s}}y} \cos(k_{zw_{s}}z) \\ \Phi_{w_{t}}(x, y, z) = e^{-jk_{xw_{t}}x} \cos(k_{yw_{t}}y) \cos(k_{zw_{t}}z) \end{cases}$$

Trefftz approach: the wave number components should satisfy the associated dispersion relation:

$$(k_{xw_r})^2 + (k_{yw_r})^2 + (k_{zw_r})^2 = (k_{xw_s})^2 + (k_{yw_s})^2 + (k_{zw_s})^2 = (k_{xw_t})^2 + (k_{yw_t})^2 + (k_{zw_t})^2 = k^2$$

WBM

Problem definition WBM concepts

Numerical validation

Conclusions

WBM modelling approach

WBM field variable approximations

Acoustic pressure expansion: bounded subdomains

$$p^{(\alpha)}(\mathbf{r}) \simeq \sum_{w=1}^{n_w^{(\alpha)}} p_w^{(\alpha)} \Phi_w^{(\alpha)}(\mathbf{r}) + \hat{p}_q^{(\alpha)}(\mathbf{r})$$

 ∞ number of solutions \rightarrow selection of wave numbers:

- WBM
- Problem definition WBM concepts
- Numerical validation
- Conclusions

WBM modelling approach

WBM field variable approximations

WBM approximations: wave functions

$$p^{(\alpha)}(\mathbf{r}) \simeq \sum_{w} p_{w}^{(\alpha)} \Phi_{w}^{(\alpha)}(\mathbf{r}) + \hat{p}_{q}^{(\alpha)}(\mathbf{r})$$

- WBM
- Problem definition WBM concepts
- Numerical validation
- Conclusions

WBM modelling approach

WBM field variable approximations

WBM approximations: wave functions

$$p^{(\alpha)}(\mathbf{r}) \simeq \sum_{w} p_{w}^{(\alpha)} \Phi_{w}^{(\alpha)}(\mathbf{r}) + \hat{p}_{q}^{(\alpha)}(\mathbf{r})$$

WBM

Problem definition WBM concepts

Numerical validation

Conclusions

WBM modelling approach

WBM field variable approximations

Acoustic pressure expansion: bounded subdomains

$$p^{(\alpha)}(\mathbf{r}) \simeq \sum_{w=1}^{n_w^{(\alpha)}} p_w^{(\alpha)} \Phi_w^{(\alpha)}(\mathbf{r}) + \hat{p}_q^{(\alpha)}(\mathbf{r})$$

\$\heta_q^{(\alpha)}(x,y,z)\$: Particular (free field) solution of Helmholtz eq.
 Acoustic point source:

$$\widehat{p}_q(x, y, z) = rac{j
ho_0 \omega Q}{4 \pi} rac{e^{-jkr_q}}{r_q}$$

with *Q* the source strength $Q = \int_V q \, dV$ and with r_q the distance to the source point.

WBM

Problem definition WBM concepts

Numerical validation

Conclusions

WBM modelling approach

WBM field variable approximations

WBM approximation: source terms

$$p^{(\alpha)}(\mathbf{r}) \simeq \sum_{w} p_{w}^{(\alpha)} \Phi_{w}^{(\alpha)}(\mathbf{r}) + \hat{p}_{q}^{(\alpha)}(\mathbf{r})$$

WBM

Problem definition WBM concepts

Numerical validation

Conclusions

WBM modelling approach

Application of a Galerkin weighted residual formulation yields

$$\left[\begin{array}{ccc} A_w^1 & \cdots & C_w^{1,N_\Omega} \\ \vdots & \ddots & \vdots \\ C_w^{N_\Omega,1} & \cdots & A_w^{N_\Omega} \end{array}\right] \left\{\begin{array}{c} p_w^1 \\ \vdots \\ p_w^{N_\Omega} \end{array}\right\} = \left\{\begin{array}{c} F_w^1 \\ \vdots \\ F_w^{N_\Omega} \end{array}\right\}$$

Properties:

- + Small number of degrees of freedom
- + No accuracy decrease for derived variables
- + High convergence rate
- Fully populated matrices with complex coefficients
- Frequency-dependent matrices
- More complex numerical integrations
- Bad numerical conditioning
- Convergence only guaranteed for convex (sub)domains
 - \rightarrow applicable to practical mid-frequency applications of moderate geometrical complexity

- WBM
- Numerical validation
- Problem setting
- Spatial results
- Efficiency
- Conclusions

Introduction

3

The Wave Based Method

Numerical validation of the WBM for 3D acoustics

Overview

- Problem setting
- Spatial predictions of acoustic quantities
- Computational efficiency comparison

4 Conclusions

- WBM
- Numerical validation
- Problem setting
- Spatial results
- Efficiency
- Conclusions

Numerical validation

Convex acoustic cavity

Acoustic fluid: Air

 $c = 340\sqrt{1+j\eta} \ {\rm m/s}, \ \rho_0 = 1.225/(1+j\eta) \ {\rm kg/m^3}, \ \eta = \{0\%.1\%\}$

- Boundary conditions: acoustically rigid ($\bar{v}_n(\mathbf{r}) = 0$)
- Excitation: discontinuous unit normal velocity on patch in front

- Introduction
- WBM
- Numerical validation Problem setting
- Spatial results
- Efficiency
- Conclusions

Numerical validation

Convex acoustic cavity

Acoustic variables at 450Hz, damped case

• Acoustic pressure amplitude [Pa]

WBM

- Numerical validation
- Problem setting
- Spatial results Efficiency
- Conclusions

Numerical validation

Convex acoustic cavity

Acoustic variables at 450Hz, damped case

• Acoustic velocity vector field [m/s]

Discontinuous velocity excitation conditions accurately taken into account

- WBM
- Numerical validation Problem setting Spatial results
- Efficiency
- Conclusions

Numerical validation

Convex acoustic cavity

Computational efficiency comparison at 450Hz

- WBM
- Numerical validation Problem setting Spatial results
- Efficiency Conclusions

Numerical validation

Convex acoustic cavity

Frequency response comparison damped problem setting

WBM

Numerical validation Problem setting Spatial results Efficiency

Conclusions

Numerical validation

Convex acoustic cavity

Relative pressure amplitude prediction errors damped problem setting

- For a similar calculation time, the WBM is an order of magnitude more accurate than the quadratic FEM
- WBM reaches a similar prediction accuracy more than 10 times faster than the quadratic FEM.

Introduction WBM Numerical validation Conclusions

Conclusions

Overview

- Introduction WBM Numerical validation
- Conclusions

Wave Based Method for steady-state dynamics

Conclusions

- + globally defined exact solutions = wave functions
- + low, mid (and high) frequency applications

Extension to 3D acoustics

- Derivation of wave function sets
- Weighted residual formulation
- ⇒ Efficient modelling of 3D problems of moderate geometrical complexity

Introduction WBM Numerical validation Conclusions

Conclusions

Wave Based Method for steady-state dynamics

- + globally defined exact solutions = wave functions
- + low, mid (and high) frequency applications

Extension to 3D acoustics

- Derivation of wave function sets
- Weighted residual formulation
- ⇒ Efficient modelling of 3D problems of moderate geometrical complexity

Next steps

Extension of the modelling approach to:

- 3D multi-domain acoustic problems
- 3D acoustic (multiple) scattering problems
- 3D acoustic multiple inclusion problems

WBM

Numerical validation

Conclusions

Thank you for your attention!

Contact details:

dr. ir. Bert Van Genechten

K.U.Leuven, dept. of Mechanical Engineering Celestijnenlaan 300B - box 2420 3001 Heverlee. Belgium

e-mail: Bert.VanGenechten@mech.kuleuven.be
http://www.mech.kuleuven.be/mod/wbm/