Effective Condition Number for Weighted Linear Least Squares Problems and Applications to the Trefftz Methods

Yi-min Wei

School of Mathematical Sciences, Fudan University, Shanghai, China Tzon-Tzer Lu, Hung-Tsai Huang and Zi-Cai Li

Abstract

In this talk, we extend the effective condition number for weighted linear least squares problem with both full rank and rank-deficient cases. First we apply the effective condition number for the linear algebraic equations of the notorious Hilbert matrix, $\mathbf{H} \in \mathbf{R}^{n \times n}$. The traditional condition number is huge for not small *n*, but the effective condition number is small. When n = 10, Cond = 0.16×10^{14} . On the other hand, for 10^8 number of random right hand vectors, the maximal effective condition number to the collocation Trefftz method (CTM) [1] for Laplace's equation with a crack singularity,

to prove that Cond_eff = $O(\sqrt{L})$ and Cond = $O(L^{\frac{1}{2}}(\sqrt{2})^{L})$, where *L* is the number of singular particular solutions used. The Cond grows exponentially as *L* increases, but Cond_eff is only $O(\sqrt{L})$. The small effective condition number explains well the high accuracy of the TM solution, but the huge Cond can not.

Keywords: Condition number, effective condition number, perturbation, weighted linear least squares problem, collocation Trefftz method, singularity problem.

Reference

Z. C. Li, T. T. Lu and H. Y. Hu and Alexander H. -D. Cheng, Trefftz and CollocationMethods,
WIT Publishers, Southampton, Boston, 2008.

Yimin WEI

魏益民,复旦大学数学学院,上海市 200433