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Abstract
In this paper Haar wavelets and hybrid functions have been applied for numerical solution of double and triple

integrals with variable limits of integration. This approach is the generalization and improvement of the method

[31] where the numerical method is only applicable to the integrals with constant limits. Apart from generalization

of the method [31], the new approach has two major advantages over the classical methods based on quadrature

rule : (i) No need of finding optimum weights as the wavelet coefficients serve the purpose of optimal weights au-

tomatically (ii) Mesh points of the wavelets algorithm are used as nodal values instead of considering the n nodes

as unknown roots of polynomial of degree n. The new method is more efficient. The novel method is compared

with existing methods and applied to a number of benchmark problems. Accuracy of the method is measured in

terms of absolute errors.

Keywords: Haar wavelets, Hybrid functions, Quadrature rule, Numerical method, Double inte-
grals, Triple integrals.

1 Introduction

Numerical integration has several applications in science and engineering. A lot of work has been
done in this area in terms quadrature rule of numerical integration. Quadrature rule is based
on polynomial interpolation. Interpolating polynomials are used to find weights corresponding
to nodes. Numerical quadrature bears some drawbacks, these include: (i) The use of large
number of equally spaced nodes in the case of Newton-Cotes quadrature rule may cause erratic
behavior with high degree polynomial interpolation (ii) Gaussian quadrature rule is also based
on polynomial interpolation but the nodes as well as the weights are chosen to maximize the
degree of accuracy of the resulting rule. Gaussian quadrature rule can be derived by the method
of undetermined coefficients but the resulting equations for the 2n unknown nodes and weights
are nonlinear. This procedure is quiet cumbersome for hand calculations and nodes and weights
are tabulated in advance before evaluating integrals numerically. A number of polynomials based
quadrature methods have been discussed in [13, 28, 19, 25, 12, 26, 11, 27] and the references
therein. In order to overcome some of the difficulties listed above, we propose a new method
based on Haar wavelets and hybrid functions to find numerical solutions of double and triple
integrals. This work should be considered as a logical continuation of our previous work of

∗The author to whom all the correspondence should be addressed. Email: siraj.islam@gmail.com

1



[31]. In the earlier paper [31], Haar wavelets and hybrid functions are used to find numerical
solution of definite integrals with constant limits and hence the methods could be used only to a
limited number of numerical integration problems. In the present paper we extend the scope of
applicability of the methods [31] to double and triple integrals with variable limits. In doing so
we introduce a new approach which not only widens the area of applicability of those methods
but also reduces the computational time and improves accuracy of the algorithm. The approach
used in [31] was to approximate the function using two and three-dimensional Haar wavelets
or two and three-dimensional hybrid functions in case of double integrals and triple integrals
respectively. As we go to higher dimensions the number of coefficients increase exponentially and
the computational cost of the method increase considerably. To avoid the rising computational
cost, the present approach is based on considering one integral at a time and applying the Haar
wavelet or hybrid function method for a single integral. After one integral has been solved the
same method is applied for the evaluation of other integrals repeatedly in similar fashion.

Wavelets have been successfully used in the field of numerical approximations. Some of
the wavelets applications are related to finding numerical solutions of integral equations and
numerical integration [20, 31], ordinary differential equations [5, 30], partial differential equations
[4] and fractional partial differential equations [33]. Various type of wavelets have been used in
such applications, for example, Daubechies [32], Battle-Lemarie [34], B-spline [5], Chebyshev
[1], Legendre [3, 29] and Haar wavelets [16, 6, 30, 31]. However because of their simplicity
Haar wavelets received the attention of many researchers. Haar wavelets have been applied
for numerical approximations by Hsiao and Chen [6], Hsiao [8], Hsiao and Wang [10], Lepik
[16, 15, 14], Lepik and Tamme [18, 17], Maleknejad and Mirzaee [21], Babolian and Shshsawaran
[2].

Hybrid functions have faster convergence than the Haar wavelets and can model discontinu-
ities in better manner than Haar wavelets, Xing et. al. [35]. Another useful property of hybrid
functions is a special product matrix and a related coefficient matrix with optimal order.The
advantage of hybrid functions is that the order of block-pulse functions and Legendre polyno-
mials are adjustable to obtain highly accurate numerical solutions than the piecewise constant
orthogonal function for the solution of integral equations, Hsiao [9]. Recently, hybrid functions
have been successfully used for the numerical solution of ordinary differential equations as well
as integral equations, see [22, 24, 9, 23, 30, 31].

Wavelets have also been applied for numerical integration by Hashish et al [7] but their method
is applicable to only those integrals that have constant limits of integration. This paper proposes
a new method based on the simple Haar wavelets and hybrid functions. This approach has the
following advantages

i Provides accurate solution in comparison with the exiting method,

ii Optimal weights are calculated using built in procedure in terms of wavelets or hybrid
function coefficients. In the new approach we do not need to consult variety of tables for
optimal weights.

iii No quadrature nodes are needed and the collocation points are used as nodal points

iv The new method calculates the integrals explicitly and it does not need solving a nonlinear
system resulting form the unknown nodes and weights,

vi Simple and direct applicability with no need of other intermediate technique is required.
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2 Numerical Examples

Example 1. ∫ 1

0

∫ y

0
e|x+y−1| dx dy = −2 + e

This example has also been solved numerically by Rathod et al [27] using finite element method.
Their best result is accurate up to 7 decimal places while we obtained results accurate up to 10
decimal places which clearly indicates superiority of our method over their method. Moreover,
their method can only be applied to integrals over triangular regions while our methods can be
applied to a variety of regions including triangular regions. Absolute errors are shown in Table
1.

Example 2. ∫ π
4

0

∫ sin y

0

1√
(1− x2)

dx dy =
π2

32

Absolute errors are shown in Table 2.

Example 3.∫ ∫
R

(x + y)−
1
2 dx dy =

2
3

(
2− 7

√
3− 15

√
5 + 20

√
6
)
≈ 3.549613026789713,

where R is a quadrilateral region connecting the points (−1, 2), (2, 1), (3, 3) and (1, 4). This
example has been solved numerically by Islam and Hossain [11] using finite element method for
quadrilateral regions only. Their best result is accurate up to 14 decimal places while our hybrid
functions method gave result accurate to 15 decimal places.

In order to solve this problem using present methods we divide the region R into three
subregions so that the given integral can be written as sum of three integrals as

∫ ∫
R

(x + y)−
1
2 dx dy =

∫ 2

1

∫ 1
2
(y+3)

(5−3y)
(x + y)−

1
2 dx dy

+
∫ 3

2

∫ 1
2
(y+3)

(y−3)
(x + y)−

1
2 dx dy +

∫ 4

3

∫ (9−2y)

y−3
(x + y)−

1
2 dx dy (1)

Absolute errors are shown in Table 3.

Example 4. ∫ π

0

∫ z

0

∫ zy

0

1
y
sin

(
x

y

)
dx dy dz =

1
2
(4 + π2)

Absolute errors are shown in Table 4.
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Table 1: Absolute Errors of Example 1

Haar Absolute Errors Hybrid Absolute Errors
M = 4, N = 5 1.6425E − 03 m = 3, n = 25 9.0521E − 07
M = 5, N = 10 4.9512E − 04 m = 4, n = 50 1.4728E − 08
M = 10, N = 15 1.9801E − 04 m = 6, n = 100 1.3179E − 09
M = 16, N = 16 1.1857E − 04 m = 8, n = 100 7.9406E − 10

Table 2: Absolute Errors of Example 2

Haar Absolute Errors Hybrid Absolute Errors
M = 3, N = 3 1.7115E − 04 m = 3, n = 10 2.5489E − 08
M = 4, N = 3 9.6650E − 05 m = 5, n = 10 4.0726E − 11
M = 5, N = 4 6.2718E − 05 m = 7, n = 10 1.0419E − 13
M = 6, N = 5 4.3844E − 05 m = 9, n = 10 3.3307E − 16

Table 3: Absolute Errors of Example 3

Haar Absolute Errors Hybrid Absolute Errors
M = N = 2 1.1497E − 02 m = 3, n = 20 7.0503E − 08
M = N = 4 2.9874E − 03 m = 4, n = 20 3.6491E − 08
M = N = 8 7.5501E − 04 m = 5, n = 20 5.1215E − 11
M = N = 16 1.8929E − 04 m = 6, n = 20 3.0780E − 11
M = N = 32 4.7355E − 05 m = 7, n = 20 6.2172E − 14
M = N = 64 1.1841E − 05 m = 8, n = 20 3.8192E − 14
M = N = 128 2.9604E − 06 m = 9, n = 20 3.9968E − 15

Table 4: Absolute Errors of Example 4

Haar Absolute Errors Hybrid Absolute Errors
M = N = P = 8 3.5959E − 03 m = 3, n = 5 6.4408E − 05
M = N = P = 16 9.0291E − 04 m = 4, n = 10 2.0353E − 06
M = N = P = 32 2.2597E − 04 m = 5, n = 10 2.7290E − 09
M = N = P = 64 5.6508E − 05 m = 6, n = 20 2.5509E − 11
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3 Conclusion

In this paper Haar wavelets and hybrid functions were applied for numerical integration of double
and triple integrals with variable limits. Comparison between the two methods shows that hybrid
functions method gives better results than Haar wavelets method. The hybrid functions method
was also compared with finite element method and its advantages can easily be observed which
are that hybrid functions method is easy to implement, does not need to modify for different
regions and gives more accurate results.
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